- Visibility 299 Views
- Downloads 312 Downloads
- Permissions
- DOI 10.18231/j.ijpca.v.12.i.2.1
-
CrossMark
- Citation
Chemical and pharmacological perspectives on natural compounds for Parkinson’s disease
Parkinson's disease, a progressive, age-related neurodegenerative disease that affects the central nervous system characterised by the selective death of dopaminergic neurones in the substantia nigra. Both non-motor symptoms and motor deficits are caused by this neuronal degeneration. Although the precise cause of PD remains unclear, several factors—such as oxidative stress, alpha-synuclein protein aggregation, mitochondrial dysfunction, and chronic neuroinflammation—are known to play critical roles in its pathogenesis.
Currently available pharmacological treatments aim to restore dopamine levels in the brain; however, they only offer symptomatic relief and do not prevent or reverse disease progression. Moreover, these therapies are often associated with limitations such as high cost, adverse effects, and reduced long-term efficacy. Considering these challenges, there is a growing need to identify alternative or complementary treatment strategies that are both effective and safer. In this context, the present review highlights the therapeutic potential of phytoconstituents possessing neuroprotective properties against the underlying mechanisms of neuro degeneration in PD. This approach supports the development of novel, plant-based therapeutic interventions that may serve as promising candidates for future PD management.
References
- Hindle JV. Ageing, Neurodegeneration and Parkinson’s Disease. Age Ageing. 2010;39(2):156–61.
- Naveed M.Variation in Parkinson's disease: age, gender, genotype and phenotype correlations in early onset disease. MD thesis, University of Glasgow.2014.
- Cannon JR, Greenamyre JT. The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol Sci. 2011;124(2):225–50.
- Jurcău MC, Andronie-Cioara FL, Jurcău A, Marcu F, Ţiț DM, Pașcalău N, et al. The Link between oxidative stress, mitochondrial dysfunction and neuroinflammation in the pathophysiology of Alzheimer’s disease: therapeutic implications and future perspectives. Antioxidants. 2022;11(11):2167.
- Nagatsu T, Sawada M. Cellular and molecular mechanisms of Parkinson’s disease: neurotoxins, causative genes, and inflammatory cytokines. Cell Mol Neurobiol. 2006;26(4-6):781–
- Zhang H, Bai L, He J, Zhong L, Duan X, Ouyang L, et al. Recent advances in discovery and development of natural products as source for anti-Parkinson’s disease lead compounds. Euro J Med Chem. 2017;141:257–72.
- Leite Silva ABR, de Oliveira RWG, Diógenes GP, de Castro Aguiar MF, Sallem CC, Lima MPP, et al. Premotor, nonmotor and motor symptoms of Parkinson’s Disease: A new clinical state of the art. Ageing Res Rev. 2023:84:101834.
- Lee TK, Yankee EL. A review on Parkinson’s disease treatment. Neuroimmunol Neuroinflam. 2022;8:222.
- Themistokleous C, Bagnoli E, Parulekar R, Muqit MMK. Role of Autophagy Pathway in Parkinson’s Disease and Related Genetic Neurological Disorders. J Mol Biol. 2023;435(12):168144.
- Koszła O, Sołek P. Misfolding and aggregation in neurodegenerative diseases: protein quality control machinery as potential therapeutic clearance pathways. Cell Commun Signal. 2024;22(1):421.
- Murphy J, McKernan DP. The Effect of Aggregated Alpha Synuclein on Synaptic and Axonal Proteins in Parkinson’s Disease—A Systematic Review. Biomolecules. 2022;12(9):1199
- Le Guerroué F, Youle RJ. Ubiquitin signaling in neurodegenerative diseases: an autophagy and proteasome perspective. Cell Death Differ. 2021;28(2):439–54.
- Henrich MT, Oertel WH, Surmeier DJ, Geibl FF. Mitochondrial dysfunction in Parkinson’s disease – A key disease hallmark with therapeutic potential. Mol Neurodegener. 2023;18(1):83.
- Karvandi MS, Hesari FS, Aref AR, Mahdavi M. The neuroprotective effects of targeting key factors of neuronal cell death in neurodegenerative diseases: The role of ER stress, oxidative stress, and neuroinflammation. Front Cell Neurosci. 2023;17.
- Ibarra-Gutiérrez MT, Serrano-García N, Orozco-Ibarra M. Rotenone-Induced Model of Parkinson’s Disease: Beyond Mitochondrial Complex I Inhibition. Mol Neurobiol.2023;60:1929–
- Dorszewska J, Kowalska M, Prendecki M, Piekut T, Kozłowska J, Kozubski W. Oxidative stress factors in Parkinson’s disease. Neural Regen Res. 2020;16(7):1383–91.
- Moreno-García A, Kun A, Calero M, Calero O. The neuromelanin paradox and its dual role in oxidative stress and neurodegeneration. Antioxidants (Basel). 2021;10(1):124.
- De R, Mazumder S, Bandyopadhyay U. Mediators of mitophagy that regulate mitochondrial quality control play crucial role in diverse pathophysiology. Cell Biol Toxicol. 2021;37(3):333–66.
- Mohamed Yusoff AA, Mohd Khair SZN. Unraveling mitochondrial dysfunction: comprehensive perspectives on its impact on neurodegenerative diseases. Rev Neurosci. 2024;36(1):53–90.
- Zamanian MY, Parra RMR, Soltani A, Kujawska M, Mustafa YF, Raheem G, et al. Targeting Nrf2 signaling pathway and oxidative stress by resveratrol for Parkinson’s disease: an overview and update on new developments. Mol Biol Rep. 2023;50(6):5455–64.
- Hirsch EC, Vyas S, Hunot S. Neuroinflammation in Parkinson’s disease. Park Relat Disord. 2012;18(1):210–12.
- Pradhan SS, Salinas K, Garduno AC, Johansson JU, Wang Q, Manning-Bog A, et al. Anti-Inflammatory and Neuroprotective Effects of PGE2 EP4 Signaling in Models of Parkinson’s Disease. J Neuroimmune Pharmacol. 2017;12(2):292–304.
- Dai XJ, Li N, Yu L, Chen ZY, Hua R, Qin X, et al. Activation of BV2 microglia by lipopolysaccharide triggers an inflammatory reaction in PC12 cell apoptosis through a toll-like receptor 4- dependent pathway. Cell Stress Chaperones. 2015;20(2):321–31.
- Huang X, Hussain B, Chang J. Peripheral inflammation and blood– brain barrier disruption: effects and mechanisms. CNS Neurosci Ther. 2020;27(1):36–47.
- Simpson DSA, Oliver PL. Ros generation in microglia: Understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants (Basel). 2020;9(8):743.
- Tan JMM, Wong ESP, Lim KL. Protein misfolding and aggregation in Parkinson’s disease. Antioxid Redox Signal. 2009;11(9):2119–34.
- Abdel-Salam OME. The Paths to Neurodegeneration in Genetic Parkinson's Disease. CNS Neurol Disord Drug Targets. 2014;13(9):1485–512.
- Sircar E, Rai SR, Wilson MA, Schlossmacher MG, Sengupta R. Neurodegeneration: Impact of S-nitrosylated Parkin, DJ-1 and PINK1 on the pathogenesis of Parkinson’s disease. Arch Biochem Biophys. 2021; 704:108869.
- Ugalde CL, Finkelstein DI, Lawson VA, Hill AF. Pathogenic mechanisms of prion protein, amyloid-β and α-synuclein misfolding: the prion concept and neurotoxicity of protein oligomers. J Neurochem. 2016;139(2):162–80.
- Oglah MK, Mustafa YF, Bashir MK, Jasim MH. Curcumin and its derivatives: A review of their biological activities. Syst Rev Pharm. 2020;11(3):472–81.
- Wang MS, Boddapati S, Emadi S, Sierks MR. Curcumin reduces α- synuclein induced cytotoxicity in Parkinson’s disease cell model. BMC Neurosci.2010;11:57.
- Doke RR, Pansare PA, Sainani SR, Bhalchim VM, Rode KR, Desai SR. The Counteracting Performance of Phytoconstituents Against Neurodegeneration Involved in Parkinson’s Disease. J Scientific Res. 2021;65(01):146–58.
- Rensburg ZJV, Abrahams S, Bardien S, Kenyon C. Toxic Feedback Loop Involving Iron, Reactive Oxygen Species, α-Synuclein and Neuromelanin in Parkinson ’s disease and Intervention with Turmeric. Mol Neurobiol. 2021;58(11):5920–36.
- Moinipour N, Barati M, Sahebkar A, Iranshahy M, Shakeri A. Protective Effects of Curcumin against Iron-induced Toxicity. Curr Pharm Biotechnol. 2021;23(8):1020–7.
- Xu J, Zhang XQ, Zhang Z. Transcription factor EB agonists from natural products for treating human diseases with impaired autophagy-lysosome pathway. Chin Med. 2020;15(1):123.
- Tan YQ, Lin F, Ding YK, Dai S, Liang YX, Zhang YS, et al. Pharmacological properties of total flavonoids in Scutellaria baicalensis for the treatment of cardiovascular diseases. Phytomedicine. 2022;107:154458.
- Gao J, Morgan WA, Sanchez-Medina A, Corcoran O. The ethanol extract of Scutellaria baicalensis and the active compounds induce cell cycle arrest and apoptosis including upregulation of p53 and Bax in human lung cancer cells. Toxicol Appl Pharmacol. 2011;254(3):221–8.
- Kang KA, Zhang R, Piao MJ, Chae S, Kim HS, Park JH, et al. Baicalein inhibits oxidative stress-induced cellular damage via antioxidant effects. Toxicol Indus Health. 2012;28(5):412–21.
- Zhang S, Ye J, Dong G. Neuroprotective effect of baicalein on hydrogen peroxide-mediated oxidative stress and mitochondrial dysfunction in PC12 cells. J Mol Neurosci. 2010;40(3):311–20.
- Sowndhararajan K, Deepa P, Kim M, Park SJ, Kim S. Baicalein as a potent neuroprotective agent: A review. Biomed Pharmacotherapy. 2017;95:1021–32. 80 Vyavhare et al / International Journal of Pharmaceutical Chemistry and Analysis 2025;12(2):73-81
- Si L, An Y, Zhou J, Lai Y. Neuroprotective effects of baicalin and baicalein on the central nervous system and the underlying mechanisms. Heliyon. 2024;11(1):e41002.
- Yang W, Li F, Xing X, Wang Z, Yu X. Study in pesticide activities of polygonum cuspidatum extracts and its active ingredient resveratrol. Nat Prod Commun. 2019;14(7).
- Castejón ML, Montoya T, Alarcón-de-la-lastra C, Sánchez-hidalgo M. Potential protective role exerted by secoiridoids from olea europaea l. In cancer, cardiovascular, neurodegenerative, aging- related, and immunoinflammatory diseases. Antioxidants. 2020;9(2):149.
- Costa LG, Garrick JM, Roquè PJ, Pellacani C. Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More. Oxid Med Cell Longev. 2016;2016:2986796.
- Gomes BAQ, Silva JPB, Romeiro CFR, dos Santos SM, Rodrigues CA, Gonçalves PR, et al. Neuroprotective mechanisms of resveratrol in Alzheimer’s disease: Role of SIRT1. Oxid Med Cell Longev. 2018:2018:8152373.
- Luo Y, Hu N, Zhao Y, Lai J, Luo X, Liu J. Resveratrol‑mediated activation of SIRT1 inhibits the PERK‑eIF2α‑ATF4 pathway and mitigates bupivacaine‑induced neurotoxicity in PC12 cells. Exp Ther Med. 2023;26(3):433.
- Goyal A, Kumari A, Verma A, Chaudhary V, Agrawal V, Yadav HN. Silent Information Regulator 1/Peroxisome Proliferator-Activated Receptor-γ Coactivator-1α Axis: A Promising Target for Parkinson’s and Alzheimer’s Disease Therapies. J Biochem Mol Toxicol. 2024;38(12):e70078.
- Huang J, Huang N, Xu S, Luo Y, Li Y, Jin H, et al. Signaling mechanisms underlying inhibition of neuroinflammation by resveratrol in neurodegenerative diseases. J Nutr Biochem. 2021:88:108552.
- Mihailović V, Srećković N, Popović-Djordjević JB. Silybin and Silymarin: Phytochemistry, Bioactivity, and Pharmacology. In: Xiao J (eds) Handbook of Dietary Flavonoids. Springer, Cham.2023
- Bellavite P. Neuroprotective Potentials of Flavonoids: Experimental Studies and Mechanisms of Action. Antioxidants (Basel). 2023;12(2):280.
- Ashique S, Mohanto S, Kumar N, Nag S, Mishra A, Biswas A, et al. Unlocking the possibilities of therapeutic potential of silymarin and silibinin against neurodegenerative Diseases-A mechanistic overview. Eur J Pharmacol. 2024;981:176906.
- Choi JY, Yi HG, Park CS, Shin DW, Kang JH. Inhibition of oxaliplatin-induced neurotoxicity by silymarin through increased expression of brain-derived neurotrophic factor and inhibition of p38-MAPK. Mol Cell Toxicol.2019;15:145–52.
- El-Shitany NA, Hegazy S, El-desoky K. Evidences for antiosteoporotic and selective estrogen receptor modulator activity of silymarin compared with ethinylestradiol in ovariectomized rats. Phytomedicine. 2010;17(2):116–25.
- Seidlová-Wuttke D, Becker T, Christoffel V, Jarry H, Wuttke W. Silymarin is a selective estrogen receptor β (ERβ) agonist and has estrogenic effects in the metaphysis of the femur but no or antiestrogenic effects in the uterus of ovariectomized (ovx) rats. J Steroid Biochem Mol Biol. 2003;86(2):179–88.
- Saha PS, Sarkar S, Jeyasri R, Muthuramalingam P, Ramesh M, Jha S. In Vitro Propagation, Phytochemical and Neuropharmacological Profiles of Bacopa monnieri (L.) Wettst.: A Review. Plants. 2020;9(4):411.
- Siddique YH, Mujtaba SF, Faisal M, Jyoti S, Naz F. The effect of Bacopa monnieri leaf extract on dietary supplementation in transgenic Drosophila model of Parkinson’s disease. Euro J Integrat Med. 2014;6(5):571–80.
- Priyanka HP, Bala P, Ankisettipalle S, Thyagarajan S. Bacopa monnieri and l-deprenyl differentially enhance the activities of antioxidant enzymes and the expression of tyrosine hydroxylase and nerve growth factor via ERK 1/2 and NF-κB pathways in the spleen of female Wistar rats. Neurochem Res. 2013;38(1):141–52.
- Srivastav S, Fatima M, Mondal AC. Bacopa monnieri alleviates paraquat induced toxicity in Drosophila by inhibiting jnk mediated apoptosis through improved mitochondrial function and redox stabilization. Neurochem Int. 2018;121:98–107.
- Yang W, Tiffany-Castiglioni E. The Bipyridyl herbicide paraquat- induced toxicity in human neuroblastoma sh-sy5y cells: relevance to dopaminergic pathogenesis. J Toxicol Environ Health A. 2005;68(22):1939–61.
- Wu YN, Wen SH, Zhang W, Yu SS, Yang K, Liu D, et al. Gastrodia elata BI.:A Comprehensive Review of Its Traditional Use, Botany, Phytochemistry, Pharmacology, and Pharmacokinetics. Evid Based Complement Alternat Med. 2023;2023:5606021.
- Taguchi H, Yosioka I, Yamasaki K, Kim I. Studies on the Constituents of Gastrodia elata Blume. Chem Pharm Bull. 1981;29(1):55–62.
- Kumar H, Kim IS, More SV, Kim BW, Bahk YY, Choi DK. Gastrodin protects apoptotic dopaminergic neurons in a toxin- induced Parkinson’s disease model. Evid Based Complement Alternat Med. 2013:2013:514095.
- Kim IS, Choi DK, Jung HJ. Neuroprotective effects of vanillyl alcohol in gastrodia elata blume through suppression of oxidative stress and anti-apoptotic activity in toxin-induced dopaminergic MN9D cells. Molecules. 2011;16(7):5349–61.
- Zhao M, Zhou Y, Sheng R, Zhang H, Xiang J, Wang J, et al. Gastrodin relieves Parkinson’s disease-related motor deficits by facilitating the MEK-dependent VMAT2 to maintain dopamine homeostasis. Phytomedicine. 2024;132.155819.
- Dai JN, Zong Y, Zhong LM, Li YM, Zhang W, Bian LG, et al. Gastrodin inhibits expression of inducible no synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS- Stimulated microglia via MAPK pathways. PLoS One. 2011;6(7):e21891.
- Pathania R, Chawla P, Khan H, Kaushik R, Khan MA. An assessment of potential nutritive and medicinal properties of Mucuna pruriens: a natural food legume. 3 Biotech. 2020;10(6):261.
- Zahra W, Birla H, Singh SS, Rathore AS, Dilnashin H, Singh R, et al. Neuroprotection by Mucuna pruriens in Neurodegenerative Diseases. Neurochem Res. 2022;47(7):1816–29.
- Dailah HG. Potential of Therapeutic Small Molecules in Apoptosis Regulation in the Treatment of Neurodegenerative Diseases: An Updated Review. Molecules 2022;27(21): 7207.
- Ng CH, Guan MSH, Koh C, Ouyang X, Yu F, Tan EK, et al. AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson’s disease. J Neurosci. 2012;32(41):14311–17.
- Thanvi B, Lo N, Robinson T. Levodopa-induced dyskinesia in Parkinson’s disease: Clinical features, pathogenesis, prevention and treatment. Postgrad Med J. 2007;83(980):384–8.
- Sun YG, Wang SS, Feng JT, Xue XY, Liang XM. Two new isoflavone glycosides from Pueraria lobata. J Asian Nat Prod Res. 2008;10(7-8):729–33.
- Zhu G, Wang X, Chen Y, Yang S, Cheng H, Wang N, et al. Puerarin protects dopaminergic neurons against 6-hydroxydopamine neurotoxicity via inhibiting apoptosis and upregulating glial cell line-derived neurotrophic factor in a rat model of Parkinson’s disease. Planta Med. 2010;76(16):1820–6.
- Y, Yang X, Ge X, Zhang F. Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice. Biomed Pharmacother. 2019;109:726–33.
- Bo J, Bao YM, Li ZG, Lei C, An LJ. Protection by puerarin against MPP+-induced neurotoxicity in PC12 cells mediated by inhibiting mitochondrial dysfunction and caspase-3-like activation. Neurosci Res. 2005;53(2):183–8.
- R, Zheng N, Liang T, He Q, Xu L. Puerarin attenuates neuronal degeneration and blocks oxidative stress to elicit a neuroprotective effect on substantia nigra injury in 6-OHDA-lesioned rats. Brain Res. 2013;1517:28–35.
- Sierpina VS, Wollschlaeger B, Blumenthal M. Ginkgo biloba. Am Fam Physician. 2003;68(5):923–6.
- Liu Q, Wang J, Gu Z, Ouyang T, Gao H, Kan H, et al. Comprehensive Exploration of the Neuroprotective Mechanisms of 81 Vyavhare et al / International Journal of Pharmaceutical Chemistry and Analysis 2025;12(2):73-81 Ginkgo biloba Leaves in Treating Neurological Disorders. Am J Chinese Med. 2024;52(4):1053–86.
- Mohammadi Zonouz A, Ghasemzadeh Rahbardar M, Hosseinzadeh H. The molecular mechanisms of ginkgo (Ginkgo biloba) activity in signaling pathways: A comprehensive review. Phytomedicine. 2024;126.
- Zarneshan SN, Fakhri S, Khan H. Targeting Akt/CREB/BDNF signaling pathway by ginsenosides in neurodegenerative diseases: A mechanistic approach. Pharmacological Research. 2022;177.
- Liu M, Peng Y, Che Y, Zhou M, Bai Y, Tang W, et al. MiR-146b- 5p/TRAF6 axis is essential for Ginkgo biloba L. extract GBE to attenuate LPS-induced neuroinflammation. Front Pharmacol. 2022;13. 978587.
- Kalra R, Kaushik N. Withania somnifera (Linn.) Dunal: a review of chemical and pharmacological diversity. Phytochem Rev. 2017;16(5):953–87.
- de Oliveira Zanuso B, de Oliveira dos Santos AR, Miola VFB, Gissoni Campos LM, Spilla CSG, Barbalho SM. Panax ginseng and aging related disorders: A systematic review. Experimental Gerontology. 2022;161:11173.
- Smith PD, Crocker SJ, Jackson-Lewis V, Jordan-Sciutto KL, Hayley S, Mount MP, et al. Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(23):13650–5.
- Maitra S, Vincent B. Cdk5-p25 as a key element linking amyloid and tau pathologies in Alzheimer’s disease: Mechanisms and possible therapeutic interventions. Life Sci. 2022;308.
- Qu S, Meng X, Liu Y, Zhang X, Zhang Y. Ginsenoside Rb1 prevents MPTP-induced changes in hippocampal memory via regulation of the α-synuclein/PSD-95 pathway. Aging. 2019;11(7):1934–64.
- Ha Y, Jo HS, Kwon TW, Jeon SH, Moon SK, Jung JH, et al. Korean black ginseng extract alleviates Alzheimer’s disease-related cognitive impairment by activating the Nrf2/HO-1 pathway and suppressing the p38 MAPK/NF-κB/STAT3 pathways and NLRP3 inflammasome via TLR2 and TLR4 modulation. J Ginseng Res. 2025;49(3):294-305.
- Serafino A, Cozzolino M. The Wnt/β-catenin signaling: A multifunctional target for neuroprotective and regenerative strategies in Parkinson’s disease. Neural Regen Res. 2023;18(2):306–8.
- Zhang W, Pan X, Fu J, Cheng W, Lin H, Zhang W, et al. Phytochemicals derived from Nicotiana tabacum L. plant contribute to pharmaceutical development. Front Pharmacol. 2024;15.
- Ferrea S, Winterer C. Neuroprotective and neurotoxic effects of nicotine. Pharmacopsychiatry. 2009;42(6):255–65.
- ElNebrisi E, Lozon Y, Oz M. The Role of α7-Nicotinic Acetylcholine Receptors in the Pathophysiology and Treatment of Parkinson’s Disease. Int J Mol Sci. 2025;26(7):3210.
- Palasz E, Wilkaniec A, Stanaszek L, Andrzejewska A, Adamczyk A. Glia-Neurotrophic Factor Relationships: Possible Role in Pathobiology of Neuroinflammation-Related Brain Disorders. Int J Mol Sci. 2023;24(7):6321.
- Spirina L V, Avgustinovich A V, Afanas’ev SG, Cheremisina O V., Volkov MY, Choynzonov EL, et al. Molecular Mechanism of Resistance to Chemotherapy in Gastric Cancers, the Role of Autophagy. Curr Drug Targets. 2019;21(7):713–21.
- Ramesh S, Arachchige ASPM. Depletion of dopamine in Parkinson’s disease and relevant therapeutic options: A review of the literature. AIMS Neurosci. 2023;10(3):200–31.
- Brooks D. J. Optimizing levodopa therapy for Parkinson’s disease with levodopa/carbidopa/entacapone: implications from a clinical and patient perspective. Neuropsych Dis Treatm. 2008;4(1):39–47.
- Sethi K. Levodopa unresponsive symptoms in Parkinson disease. Move Dis. 2008;23(3):521-33.
- Saini N, Singh N, Kaur N, Garg S, Kaur M, Kumar A, et al. Motor and non-motor symptoms, drugs, and their mode of action in Parkinson’s disease (PD): A review. Med Chem Res. 2024;33(4):580–99.
- Joutsa J, Lipsman N, Horn A, Cosgrove GR, Fox MD. The return of the lesion for localization and therapy. Brain. 2023;146(8):3146–55.
- Panikar D, Kishore A. Deep brain stimulation for Parkinson’s disease. Neurol India. 2003;51(2):167–75.
- Máñez-Miró JU, Rodríguez-Rojas R, Del Álamo M, Martínez- Fernández R, Obeso JA. Present and future of subthalamotomy in the management of Parkinson´s disease: a systematic review. Expert Rev Neurotherapeutics. 2021;21(5):533–45.
- Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, et al. Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke. 2016;47(6):e98–
- Wu CC, Xiong HY, Zheng JJ, Wang XQ. Dance movement therapy for neurodegenerative diseases: A systematic review. Front Aging Neurosci. 2022;14;975711.
How to Cite This Article
Vancouver
Vyavahare S, Kangude V, Jadhav S, Doke RR. Chemical and pharmacological perspectives on natural compounds for Parkinson’s disease [Internet]. Int J Pharm Chem Anal. 2025 [cited 2025 Oct 03];12(2):73-81. Available from: https://doi.org/10.18231/j.ijpca.v.12.i.2.1
APA
Vyavahare, S., Kangude, V., Jadhav, S., Doke, R. R. (2025). Chemical and pharmacological perspectives on natural compounds for Parkinson’s disease. Int J Pharm Chem Anal, 12(2), 73-81. https://doi.org/10.18231/j.ijpca.v.12.i.2.1
MLA
Vyavahare, Sambhaji, Kangude, Vitthal, Jadhav, Saurabh, Doke, Rohit R. "Chemical and pharmacological perspectives on natural compounds for Parkinson’s disease." Int J Pharm Chem Anal, vol. 12, no. 2, 2025, pp. 73-81. https://doi.org/10.18231/j.ijpca.v.12.i.2.1
Chicago
Vyavahare, S., Kangude, V., Jadhav, S., Doke, R. R.. "Chemical and pharmacological perspectives on natural compounds for Parkinson’s disease." Int J Pharm Chem Anal 12, no. 2 (2025): 73-81. https://doi.org/10.18231/j.ijpca.v.12.i.2.1