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Abstract 

Parkinson's disease, a progressive, age-related neurodegenerative disease that affects the central nervous system characterised by the selective death of 

dopaminergic neurones in the substantia nigra. Both non-motor symptoms and motor deficits are caused by this neuronal degeneration. Although the precise 

cause of PD remains unclear, several factors—such as oxidative stress, alpha-synuclein protein aggregation, mitochondrial dysfunction, and chronic 
neuroinflammation—are known to play critical roles in its pathogenesis. 

Currently available pharmacological treatments aim to restore dopamine levels in the brain; however, they only offer symptomatic relief and do not prevent or 

reverse disease progression. Moreover, these therapies are often associated with limitations such as high cost, adverse effects, and reduced long-term efficacy. 
Considering these challenges, there is a growing need to identify alternative or complementary treatment strategies that are both effective and safer. In this 

context, the present review highlights the therapeutic potential of phytoconstituents possessing neuroprotective properties against the underlying mechanisms 

of neuro degeneration in PD. This approach supports the development of novel, plant-based therapeutic interventions that may serve as promising candidates 
for future PD management. 
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1. Introduction 

After Alzheimer's disease (AD), Parkinson's disease (PD) is 

the second most common age-related neurodegenerative 

condition affecting the central nervous system. It mostly 

impacts motor function, which hinders coordination and 

voluntary movement.1  As the age increases, the frequency of 

PD rises dramatically, and epidemiological evidence 

indicates that women are more likely than men to be afflicted. 

PD was first described by the English surgeon James 

Parkinson, who referred to it as the “shaking palsy.3” 

PD is characterised by the gradual degradation of 

dopaminergic neurones in the midbrain's substantia nigra 

pars compacta (SNpc), which results in motor impairment. In 

addition to dopaminergic neuron loss, genetic mutations and 

environmental exposures also play crucial roles in the onset 

and progression of the disease.4 One of the key pathological 

features is the presence of Lewy bodies, which result from 

abnormal accumulation of misfolded alpha-synuclein 

proteins and contribute to neuronal degeneration. Another 

important contributing factor is mitochondrial malfunction, 

which results in decreased ATP synthesis and elevated ROS 

production, which in turn sets off apoptotic pathways and 

neuronal cell death. Furthermore, ROS-induced neuro 

inflammation contributes substantially to disease 

progression.5 The release of neurotoxins and inflammatory 

cytokines exacerbates dopaminergic neuron loss in both the 

striatum and substantia nigra, leading to behavioral and 

biochemical abnormalities.6 

A number of intracellular signalling pathways have been 

linked to the pathophysiology of PD. These include the Nrf2 

pathway, PI3K/Akt pathway, the p38-MAPK pathway, the 

GSK-3β pathway, the JNK pathway, the NF-κB pathway, the 

Wnt-signalling pathway, and the autophagy-lysosome 

pathway.7 Together, these interrelated pathways play a role 

in the development of illness and neuronal death. 

Bradykinesia, resting tremor, muscular stiffness, and speech 

and writing difficulties are among the main motor symptoms 

of PD. Furthermore, non-motor symptoms such autonomic 

dysfunction, sleep abnormalities, gastrointestinal problems, 
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and neuropsychiatric disturbances are frequently experienced 

by PD patients. These symptoms significantly reduce quality 

of life and hinder daily functioning.8 

Although the underlying causes of PD remain elusive, 

the current focus of treatment is to alleviate symptoms using 

pharmacological agents such as L-DOPA, monoamine 

oxidase-B (MAO-B) inhibitors, and dopamine (DA) agonists. 

Among these, L-DOPA remains the gold standard; however, 

its long-term use often results in complications like motor 

fluctuations and dyskinesias. Moreover, adjunct medications 

can lead to adverse effects including confusion, 

hallucinations, and hepatotoxicity, while failing to halt 

dopaminergic neurodegeneration or disease progression.9 

Current therapeutic approaches are limited by 

suboptimal efficacy and potential side effects. Therefore, 

there is a pressing need to develop novel therapeutic agents 

with greater effectiveness and fewer adverse outcomes. This 

review aims to explore and highlight the potential of natural 

sources in the development of future treatment strategies 

targeting neurodegeneration in PD. 

1.1. Pathogenesis of Parkinson’s disease 

The neurodegenerative condition known as PD is complex. 

Protein misfolding, mitochondrial dysfunction, oxidative 

stress, neuroinflammation, and genetic abnormalities are 

some of the processes that lead to the neurodegeneration 

observed in PD. 

1.2. Protein stability and aggregation in Parkinson’s 

disease 

One of the main pathogenic processes in neurodegeneration 

is protein misfolding, in which the normal protein structure 

within the nerve cells transforms into an aberrant three-

dimensional shape. Protein misfolding is known to result 

from mutations in a number of genes, including SNCA, 

PARK2, PINK1, DJ-1, and LRRK2, which compromises 

neuronal function.10 Protein misfolding is normally inhibited 

by neurotrophic factors, whereas PD patients have lower 

levels of these factors. Misfolded proteins within neurones 

accumulate and aggregate as a result of this decrease.11 Lewy 

bodies (LBs) are the name given to these aberrant aggregates. 

Alpha-synuclein, a protein that is extremely prone to 

misfolding and aggregation, is the primary constituent of 

LBs. Axonal transport, synaptic vesicle function, and 

neuronal plasticity are all impacted by alpha-synuclein. 

Alpha-synuclein aggregates into protofibrils, fibrils, and 

filaments in response to genetic mutations, oxidative and 

nitrosative stress, and mitochondrial malfunction.12 These 

aggregated proteins interfere with the ubiquitin-proteasome 

system and chaperone-mediated autophagy, impairing 

neuronal function and axonal transport. Furthermore, by 

interfering with autophagy, vesicular homeostasis, 

mitochondrial function, and neuroinflammation, alpha-

synuclein in LBs exacerbates neuro-degeneration.13 

1.3. Mitochondrial dysfunction 

Mitochondria, the intracellular organelles responsible for 

biological oxidation and ATP synthesis, play a crucial role in 

the pathophysiology of Parkinson's disease (PD). The 

enzyme MAO-B converts MPTP into MPP⁺, a poisonous 

cation that causes mitochondrial dysfunction by blocking the 

electron transport chain.14 This leads to neuronal death in 

dopaminergic neurons. Overproduction of ROS, increased 

oxidative stress, reduced ATP synthesis, and increased 

intracellular calcium and nitric oxide (NO) contribute to 

excitotoxicity and neuronal injury.15 The decline in ATP 

production also impairs the ubiquitin-proteasome system, 

activating pathways associated with protein aggregation and 

apoptosis. Rotenone selectively degenerates dopaminergic 

neurons by inhibiting mitochondrial respiratory chain 

complex-I. Mitochondrial dysfunction and PD 

pathophysiology are linked to genetic abnormalities in 

mitochondrial DNA, such as a maternally transmitted 

mutation in 12S rRNA.16 

1.4. Oxidative stress 

Oxidative stress occurs when reactive oxygen species (ROS) 

overpower the body's antioxidant defense, leading to cellular 

damage. ROS damage essential biomolecules, impairing 

neuronal function. In the brain, mitochondria generate ROS, 

but excessive accumulation is triggered by factors like aging, 

DA metabolism, neuroinflammation.17 glutathione depletion, 

elevated iron and calcium levels, mitochondrial dysfunction, 

and environmental toxins. Neuromelanin, a dark pigment, 

synthesises redox-active iron, exacerbating oxidative 

damage.18 Mutations in α-synuclein promote cytoplasmic DA 

accumulation and ROS production, fostering neuronal 

vulnerability. 

Excess ROS can also impair critical mitochondrial 

quality control mechanisms. For instance, oxidative stress 

can mutate or destabilize PINK1, a mitochondrial 

serine/threonine kinase involved in mitophagy and 

maintenance of mitochondrial membrane potential.19 

Dysfunctional PINK1 impairs mitochondrial clearance, 

allowing damaged mitochondria to persist and propagate 

further ROS. In addition, ROS-induced inhibition of 

mitochondrial complex-I leads to cytochrome c release and 

activation of caspase-dependent apoptotic pathways, 

contributing to progressive neuronal death.20 Moreover, 

oxidative stress down regulates the expression of Nrf2, a 

master regulator of antioxidant gene expression. Reduced 

Nrf2 activity further compromises endogenous defence 

systems, accelerating PD progression.21 

1.5. Neuroinflammation 

There is growing recognition that neuroinflammation plays a 

key role in the pathophysiology of PD. It is found that that 

the substantia nigra of post-mortem PD brains had higher 

concentrations of human leukocyte antigen-DR-positive 

microglia. The CNS resident immune cells, known as 
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microglia, have two functions: they are protective in healthy 

settings but neurotoxic when triggered repeatedly.22 

The striatum and substantia nigra of PD patients have 

been shown to have elevated levels of pro-inflammatory 

cytokines, including cyclooxygenase-2 (COX-2), inducible 

nitric oxide synthase (iNOS), interleukin-1 beta (IL-1β), 

interleukin-6 (IL-6), and tumour necrosis factor-alpha (TNF-

α).23 These cytokines perpetuate a chronic inflammatory 

milieu that impairs neuronal survival. α-synuclein aggregates 

act as endogenous danger-associated molecular patterns. 

These aggregates activate toll-like receptor 2 (TLR2) 

signaling on microglia, resulting in the release of 

inflammatory mediators and further microglial activation.24 

Reactive astrocytes also contribute to this neuroinflammatory 

landscape by producing cytokines and modulating BBB 

permeability. 

The production of chemokines, complement cascade 

proteins, ROS, and RNS characterises the ensuing 

inflammatory milieu. These substances work together to 

weaken the BBB, enabling peripheral immune cells to enter 

the central nervous system.25 Although research is still 

ongoing to determine the exact mechanism underlying the 

relationship between neuroinflammation and neuro 

degeneration, oxidative stress and mitochondrial dysfunction 

seem to be key factors. The dysfunctional mitochondria 

produce excessive NO and ROS, which amplify microglial 

activation and cytokine production. This establishes a feed 

forward loop of neuroinflammation and oxidative injury that 

promotes dopaminergic neurodegeneration.26 Additionally, 

chronic inflammation may impair neurogenesis, disrupt 

synaptic plasticity, and induce tau hyper phosphorylation, 

further compounding neurodegenerative pathology. 

1.6. Proteolysis defects 

Protein homeostasis is crucial for neuronal survival, and in 

Parkinson's disease (PD), these systems are disrupted, 

leading to the accumulation of misfolded α-synuclein and 

toxic protein aggregates.27 Mutations in genes linked to 

familial PD, such as PINK1, Parkin, DJ-1, and UCH-L1, 

disrupt mitochondrial function and the UPS, exacerbating α-

synuclein aggregation and dopaminergic neuronal 

degeneration.28 Parkin, an E3 ubiquitin ligase, tags damaged 

mitochondrial proteins for degradation via mitophagy, while 

DJ-1, a redox-sensitive chaperone and antioxidant, heightens 

oxidative/nitrosative stress and promotes DA oxidation.29 

UCH-L1, a deubiquitinating enzyme, hinders proteasome 

activity and contributes to protein aggregation. Defective 

proteolysis not only leads to neuronal death but also 

contributes to the propagation of α-synuclein pathology 

between neurons, possibly through prion-like mechanisms.30 

2. Discussion 

2.1. Natural products in the management of Parkinson’s 

disease  

In recent years, there has been a growing preference for 

herbal nutraceuticals in healthcare systems across the globe. 

A significant proportion of pharmaceutical formulations 

currently available in the market are derived from natural 

sources. With the limitations of conventional synthetic drugs 

in treating neurodegenerative disorders like PD, natural 

products have emerged as promising therapeutic alternatives. 

Various herbs and plant-derived compounds have been 

extensively explored for their neuroprotective potential in 

PD, demonstrating higher reliability and efficacy in some 

cases compared to standard treatments. 

2.1.1. Curcumin 

Curcumin is a polyphenolic compound found in Curcuma 

longa, along with desmethoxycurcumin and bis-

desmethoxycurcumin. It exhibits a broad spectrum of 

biological activities, including antioxidant, anti-

inflammatory, antiparasitic, and neuroprotective effects.31 

Curcumin has been shown to reduce α-synuclein aggregation 

and mitigate the associated cytotoxicity. Its cytoprotective 

action involves inhibition of caspase-3, thereby preventing 

apoptosis.32 

Curcumin also modulates multiple cell death pathways, 

including both caspase-dependent and independent 

mechanisms, and enhances the solubility of α-synuclein and 

synphilin-1, thus reducing their toxicity.33 It protects 

dopaminergic neurons through antioxidant effects, 

mitochondrial stabilization, inhibition of 

acetylcholinesterase, and reduction of neuroinflammation. 

One notable benefit of curcumin is its ability to regulate iron 

metabolism in the brain. Excessive brain iron levels in PD 

can catalyze the formation of harmful radicals, leading to DA 

oxidation and neuronal damage.34 Curcumin downregulates 

hepcidin, a key protein in iron regulation, thereby mitigating 

iron-induced neurotoxicity.35 Furthermore, it activates 

autophagy-lysosomal pathways via translocation of 

transcription factor EB (TFEB), supporting cellular clearance 

mechanisms. It also inhibits the phosphorylation of JNKs, 

which helps prevent mitochondrial dysfunction and neuronal 

apoptosis.36 These diverse actions make curcumin a 

promising therapeutic candidate in PD treatment. 

2.1.2. Baicalein 

Baicalein, a flavonoid primarily found in Scutellaria 

baicalensis, has shown extensive pharmacological properties 

such as antioxidant, antiviral, anti-inflammatory, and 

cardioprotective effects.37 In experimental models, the 

ethanolic extract of Scutellaria baicalensis has been shown 

to downregulate the expression of COX-2 and iNOS, leading 

to reduced nitric oxide production and inhibition of 
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neuroinflammatory mediators like PGE2.38 Additionally, 

baicalein prevents oxidative stress-induced damage by 

inhibiting the formation of ROS, preserving ATP levels, and 

stabilizing mitochondrial membranes.39 

Further, baicalein enhances mitochondrial integrity by 

reducing mitochondrial ROS production, increasing the Bcl-

2/Bax ratio, and inhibiting cytochrome c release—thereby 

supporting cellular respiration and survival.40 It also plays a 

role in preserving tyrosine hydroxylase activity, which is 

crucial for DA synthesis. Its ROS scavenging ability is 

attributed to its structural resemblance to catechol 

compounds. Baicalein promotes neuronal survival by 

regulating DA and serotonin (5-HT) levels and inhibits 

neuronal inflammation and apoptosis.41 

Moreover, baicalein has been found to prevent α-

synuclein aggregation, a hallmark of PD pathology, by 

interacting with adjacent dihydroxyphenyl groups. It also 

activates the PI3K/AKT signaling pathway, which 

contributes to neuronal protection by mitigating oxidative 

stress. These multifaceted mechanisms highlight baicalein’s 

potential as a neuroprotective agent in PD therapy.42 

2.1.3. Resveratrol 

A polyphenol that was extracted from the Polygonum 

Cuspidatum plant, resveratrol is found in peanuts, wine, and 

grape products.43 It has neuroprotective, anticancer, anti-

atherosclerotic, and antioxidant qualities. Through the 

autophagy induction route, resveratrol decreases α-synuclein 

aggregation, which results in the removal of proteins that 

have accumulated improperly.44 Additionally, resveratrol 

treatment decreases apoptosis in PC12 cells intoxicated with 

MPP⁺. Its capacity to prevent cytochrome-C release and the 

nuclear translocation of factors that induce apoptosis 

mediates the suppression of apoptotic cell death.45 

Additionally, resveratrol activates SIRT1 (Silent 

Information Regulator Two Protein), an enzyme that 

deacetylates regulatory proteins and plays a crucial role in 

neuroprotection.46 SIRT1 activation promotes neuronal 

survival by deacetylating PGC-1α. Resveratrol also inhibits 

apoptosis and mitochondrial damage by activating the 

peroxisome proliferator-activated receptor-γ (PPARγ), which 

in turn promotes the production of anti-apoptotic proteins like 

Bcl-2.47-48 Furthermore, resveratrol inhibits 

neuroinflammation by suppressing microglial activation and 

modulating inflammatory mediators such as COX-2 and 

TNF-α in the SNpc.49 

2.1.4. Milk thistle  

The bioactive substances known as silymarin, which include 

silybinin, isosilybinin, silydianin, silychristin, and taxifolin, 

are found in Silybum marianum, a member of the Asteraceae 

family50 Silymarin is well known for its neuroprotective, anti-

inflammatory, and antioxidant qualities. It raises serotonin 

and DA levels in a dose-dependent way, most likely by 

blocking MAO-B, which stops DA from being broken down 

into DOPAC.51 

Silymarin also interferes with the formation of amyloid-

beta (Aβ) plaques and inhibits neuroinflammatory processes 

by suppressing inflammatory markers such as NF-kB and 

TNF-α.52 Through this, it helps preserve neuronal 

populations by regulating trophic factors and inhibiting 

apoptotic signalling.53 Interestingly, silymarin shows an 

affinity for estrogen receptor-beta (ER-β), and its interaction 

with this receptor contributes to its neuroprotective effects. 

Its broad mechanisms of action support its role as a 

supportive agent in PD therapy.54-55 

2.1.5. Bacopa monnieri 

Major phytoconstituents such as bacoside A3, bacopasaponin 

C, bacopaside II, bacopaside X, hersaponin, monnierasides I–

III, plantainoside B, and cucurbitacin are found in Bacopa 

monnieri belonging to the family Scrophulariaceae.56 

Bacoside A is the most effective of them. Bacopa has anti-

parkinsonian, anti-stroke, and anticonvulsant qualities and is 

frequently used to treat schizophrenia and AD. In a 

Drosophila model, bacopa enhances behavioural function 

and prevents oxidative damage, improving neuronal 

lifespan.57  

It enhances both motor and cognitive function by 

upregulating TH expression in the SNpc Administration of 

Bacopa extract positively affects mitochondrial membrane 

potential and specifically regulates complex I, thereby 

reducing ROS-induced apoptosis in SK-N-SH neuroblastoma 

cells exposed to paraquat and MPTP.58-59 This makes Bacopa 

a potential herbal candidate for PD management.60 

2.1.6. Gastrodin 

The saprophytic perennial herb Gastrodia elata (family: 

Orchidaceae) has long been utilised for its calming, 

analgesic, and anticonvulsant properties in treating ailments 

including vertigo, epilepsy, and general paralysis.61 Vanillin, 

4-hydroxybenzaldehyde, gastrodin, and vanillyl alcohol are 

some of its main ingredients. Additionally, it has anti-

mutagenic, anti-asthmatic, antibacterial, and antioxidant 

properties.62 

Gastrodin exerts neuroprotective effects by modulating 

DA levels in the striatum and reducing DA turnover. It 

enhances dopaminergic cell viability and suppresses 

cytotoxicity by reducing ROS, decreasing the Bax/Bcl-2 

ratio, and preventing PARP proteolysis.63-64 In subchronic 

MPTP-induced PD mouse models, gastrodin shows anti-

apoptotic and antioxidant effects and improves motor 

function in pole and rotarod tests.65 Vanillyl alcohol, another 

compound in Gastrodin, exhibits anti-inflammatory activity 

by downregulating cytokines such as TNF-α and IL-1β via 

inhibition of NF-κB and MAPK pathways. Overall, gastrodin 

has promising potential in PD therapy.66 
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2.1.7. Mucuna pruriens 

Mucuna pruriens (MP), also referred to as cowhage or 

atmagupta, is a member of the Leguminosae family.67 It 

includes beta-sitosterol, glutathione, gallic acid, and L-

DOPA (3-(3,4-dihydroxyphenyl)-L-alanine). MP shows 

antimicrobial, anti-inflammatory, antioxidant, and 

neuroprotective effects.68 It alleviates behavioral, motor, and 

cognitive symptoms by increasing DA levels. MP promotes 

neuronal survival by downregulating apoptotic proteins and 

enhancing anti-apoptotic protein levels.69 In both Drosophila 

and animal PD models, it also increases TH expression and 

boosts mitochondrial and synaptic function.70  Clinical 

evidence supports MP's potential as a treatment for PD by 

suggesting that it may be more effective than synthetic 

levodopa at reducing dyskinesia.71 

2.1.8. Pueraria lobate 

Pueraria lobata, a Chinese herb of the Leguminosae family, 

is traditionally used as an antipyretic, antidiarrheal, and for 

treating angina and hypertension.72 Increased production of 

DA and TH, as well as the overexpression of GDNF, are 

thought to be responsible for its neuroprotective benefits in 

PD.73 Important active ingredients that improve cell viability 

include genistein and daidzein, which prevent caspase-

dependent death. One important component, puerarin, 

prevents apoptotic proteins like p53 and Bax from moving 

nuclearly and inhibits caspase-3.74 PL also shows antioxidant 

activity through upregulation of DJ1 and SOD, protecting 

neurons from oxidative damage. It mediates anti-apoptotic 

effects via PI3K/Akt signaling, inhibiting cytochrome C 

release, enhancing phospho-Akt, and stabilizing 

mitochondrial membrane potential to prevent H₂O₂-induced 

apoptosis.75-76 

2.1.9. Ginkgo biloba 

The main active ingredients of Ginkgo biloba, a plant 

belonging to the Ginkgoaceae family, are ginkgolides and 

bilobalide.77 Strong antioxidant, antianxiety, anticancer, 

antibacterial, and neuroprotective properties are 

demonstrated by ginkgo biloba extract (GBE). TH and DA 

transporter expression, glutathione levels, superoxide 

dismutase, and locomotor activity are all improved by GBE 

therapy.78 It provides neuroprotection by preventing both 

caspase-dependent and -independent neuronal death, which 

is caused by intracellular calcium ion downregulation via 

calbindin D28K mRNA regulation.79 

Supplementation with Ginkgo biloba leads to the 

phosphorylation of the transcription factor CREB, which 

upregulates trophic factors such as BDNF and GDNF.80 It 

also improves antioxidant status, which collectively 

contributes to the improvement in cognitive and motor 

dysfunction. Additionally, GBE has anti-neuroinflammatory 

properties in animal models caused by LPS.81 This is because 

it can prevent the activation of MAPK signalling and the 

production of pro-inflammatory cytokines.79 Furthermore, 

GBE's beneficial effects on Akt signalling, which results in 

anti-apoptotic activity, are connected to its neuroprotective 

benefits. 

2.1.10. Withania somnifera 

The main components extracted from Withania somnifera 

(WS), a plant belonging to the Solanaceae family, are 

withanolides, withanine, somniferine, somnine, 

somniferinine, withananine, and pseudo-withanine.82 WS 

raises natural antioxidant enzymes including GPx and GSH 

and decreases inflammatory responses. It raises DA levels in 

the SNpc, which greatly enhances behavioural and cognitive 

capabilities. In model organisms, WS also reduces 

neurotoxicity and mitochondrial dysfunction brought on by 

neurotoxins.82 WS's powerful antioxidant activity and 

capacity to raise DA and TH levels are primarily responsible 

for its neuroprotective benefits. 

2.1.11. Ginseng 

Ginseng contains ginsenosides as its major 

phytoconstituents, which contribute to its neuroprotective, 

anti-inflammatory, and antioxidant activities. By raising anti-

apoptotic proteins and decreasing pro-apoptotic factors like 

Bax, Bcl-2, and cytochrome c, Panax ginseng lowers 

neuronal apoptosis and shields dopaminergic neurones from 

oxidative stress.83 In PD, cyclin-dependent kinase 5 (Cdk5) 

overexpression is essential.84 Normally, p35 activates Cdk5, 

maintaining neuronal survival, but its overactivation leads to 

increased p25 levels and neuron loss.85 Ginsenoside Rg1 

prevents MPTP-induced overactivation of Cdk5, thus 

preventing neuro-degeneration.86 

Korean red ginseng activates the Nrf2 transcription 

factor, providing antioxidant effects, and alleviates 

neuroinflammation by suppressing the NF-κB pathway and 

inhibiting activation of microglia and astrocytes, thereby 

reducing inflammatory mediator release in the SNpc.87 

Ginseng also exerts neuroprotective properties in PD through 

Wnt/β-catenin signaling, offering a novel approach to disease 

management.88 Overall, ginseng's neuroprotective effects are 

due to its antioxidant, anti-inflammatory, and anti-apoptotic 

mechanisms. 

2.1.12. Nicotine 

Nicotine is derived from plants in the Solanaceae family. In 

addition to controlling neurotrophic factors and neuronal 

excitability, intracellular calcium decrease is essential for 

several apoptotic pathways.89 In order to decrease apoptotic 

signalling, increase neuronal excitability, and activate 

neurotrophic factors—all of which contribute to 

neuroprotection—nicotine dramatically lowers intracellular 

calcium ion levels in neurones.90  
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Alpha-7 nicotinic acetylcholine receptors (a7-nAChRs) 

are activated when nicotine is administered, which mediates 

its neuroprotective effects.91 When these receptors are 

activated, trophic factors like GDNF are upregulated, Lewy 

body formation is inhibited, microglial activation and 

neuroinflammation are attenuated, and synaptic protein 

production that is essential for neuronal survival is 

stimulated.92 These mechanisms collectively lead to 

improvements in motor and cognitive functions. Further 

studies indicate that a7-nAChR activation is linked to Wnt/β-

catenin and PI3K/Akt cellular signaling pathways.93 

2.2. Challenges with current synthetic treatments for 

Parkinson’s disease 

While several medications are available for managing PD, 

none of them target the underlying cause of the disorder. 

Most current treatments focus only on alleviating symptoms. 

For instance, the hallmark motor symptoms of PD are 

primarily due to DA depletion.94 To address this, dopamine 

replacement therapies—such as levodopa combined with 

carbidopa—are commonly prescribed. However, despite 

being considered the "gold standard," levodopa therapy has 

notable drawbacks.95 It does not influence the disease's root 

cause, and long-term use often leads to worsening symptoms 

and complications. 

Chronic administration of levodopa may result in 

debilitating motor issues such as impaired speech, altered 

gait, and poor posture.96 Additionally, it can accelerate 

neurodegeneration through mechanisms involving oxidative 

stress. Other PD medications, including MAO-B inhibitors, 

COMT inhibitors, and anticholinergic drugs, are also 

associated with side effects like sleep disturbances, 

confusion, and hallucinations.97 

When pharmacological interventions are no longer 

effective, surgical options such as deep brain stimulation 

(DBS) or lesion-based procedures are considered.98 DBS, 

which involves implanting a device to deliver electrical 

impulses to specific brain regions like the subthalamic 

nucleus or globus pallidus internus, is often preferred for its 

effectiveness and relatively lower invasiveness. However, 

DBS also has limitations—it does not halt disease 

progression or prevent symptom worsening.99 Lesion 

surgeries like thalamotomy, pallidotomy, and 

subthalamotomy are now rarely performed due to associated 

risks, including the potential for brain haemorrhage, 

increased morbidity, and mortality.100 

Rehabilitation therapy, which is largely free from 

adverse effects, serves as a supportive approach aimed at 

improving patients' functional abilities. This includes daily 

physical exercises like stretching, posture correction, and 

muscle strengthening. Research shows that treadmill training 

and physical exercise can significantly enhance motor 

function in PD patients.101 Moreover, unconventional 

therapies such as music and dance therapy have shown 

promise in improving motor activities. 

Despite the variety of available treatment options, the 

current therapeutic landscape for PD faces significant 

limitations. These include a focus on symptomatic relief 

without affecting disease progression, concerns regarding 

long-term safety, reduced quality of life, and high treatment 

costs. 

3. Conclusion 

PD remains one of the most prevalent neurodegenerative 

disorders globally, yet effective curative treatments are still 

lacking. Although the exact cause of PD remains elusive, 

current therapies are primarily aimed at symptom 

management, particularly through enhancing DA levels. The 

disease’s complex pathogenesis involves multiple 

interrelated mechanisms and contributing factors, many of 

which can be modulated by bioactive compounds derived 

from natural sources. 

Recent research has shown that various natural products 

possess anti-Parkinsonian properties by targeting 

pathological pathways associated with PD. Given the 

growing global burden of PD, the development of more 

effective and safer therapeutic strategies is urgently required. 

With ongoing investigations into the disease mechanisms and 

further exploration of the pharmacological effects of natural 

compounds, an increasing number of natural monomeric 

components have demonstrated efficacy against PD in both 

in vivo and in vitro studies. 

However, many of these bioactive molecules are not yet 

suitable for direct therapeutic use due to limitations such as 

poor bioavailability or inadequate blood–brain barrier 

penetration. Therefore, detailed studies on the structure–

activity relationships of these natural compounds may pave 

the way for designing novel drugs that retain the biological 

activity of their natural scaffolds while improving their 

pharmacokinetic properties and therapeutic potential. In 

conclusion, these naturally derived monomeric components 

may serve as valuable leads for the development of next-

generation anti-Parkinson drugs, combining the advantages 

of natural efficacy with enhanced clinical applicability. 
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