Content available at: https://www.ipinnovative.com/open-access-journals



International Journal of Pharmaceutical Chemistry and Analysis

Journal homepage: https://www.ijpca.org/

# **Original Research Article Dissolution method development and validation of brexpiprazole**

Mansi Patole<sup>1</sup>\*, Atul Bendale<sup>1</sup>, Vasim Pathan<sup>2</sup>, Sushil Narkhede<sup>1</sup>, Namrata Revar<sup>2</sup>, Anil G Jadhav<sup>2</sup>

<sup>1</sup>Sandip Institute of Pharmaceutical Sciences,, Nashik, Maharashtra, India <sup>2</sup>Mahavir Institute of Pharmacy, Nashik, Maharashtra, India



TIVE PUBLIC PI DE

# ARTICLE INFO

Article history: Received 13-06-2024 Accepted 01-07-2024 Available online 30-09-2024

Keywords: **RP-HPLC** dissolution Brexpiprazole Development Validation

## ABSTRACT

Background : A stability-indicating RP-HPLC method was established and validated for the determination of Brexpiprazole in bulk drug-using 1260 Infinity HPLC having column Hemochrom C-8, 25 cm X 4.6 mm x 5  $\mu$ , USP Apparatus Type II (Paddle), and sonicator. The prepared mobile phase was filtered as per the standard procedure. Analysis was carried out at wavelength 227 nm, flow rate 1ml per minute, 18-22 °C temperature, with an injection volume of 50  $\mu$ l with time 21 minutes.


Results: It was found that interference of diluent and placebo is not more than 0.5% of Brexpiprazole. The individual % recovery was found to be between 97.0% to 100.0%, the linearity was within the range of 10- 60  $\mu$ g mL with a Correlation Coefficient of 0.999, Slope of the regression line was found to be 1299178.9578 which means all parameters were found to be within range. In precision % RSD for % released dissolution values were found to be 99.16, in robustness, all the parameters like change in the flow rate, wavelength, and in RPM shows that the developed method was robust.

Conclusion : The proposed approach performed well in terms of sensitivity, precision, accuracy, linearity and range, robustness. The well-known RP-HPLC method for the study of Brexpiprazole was shown to be trustworthy, as well as easy, consistent, cost-effective, and exact. For quality control or routine quantification, this method is applicable to determine Brexpiprazole in a bulk and pharmaceutical dosage form. This developed method required less time.

This is an Open Access (OA) journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprint@ipinnovative.com

#### 1. Introduction



E-mail address: Atulbendale123@gmail.com (M. Patole).

Brexpiprazole is a BCS class II type called (7-{4-[4-(1-benzothiophen-4-yl) piperazin-1-yl] butoxy} quinoline-2(1H)-one is a new medication in psychiatric<sup>1,2</sup> and also in the treatment of depression which has a high affinity for monoamine neurotransmitters like serotonin, dopamine, and noradrenaline receptors, For other major depressive disorder like Alzheimer's disease, schizophrenia<sup>3,4</sup>, neurobehavioral disorders<sup>5</sup>, combat disorder, bipolar disorder treatment, adjunctive treatment it is mostly used. It has more potency than other antipsychotic drugs with little aqueous solubility and substantial intestinal permeability.<sup>6,7</sup>

Brexpiprazole was originally approved in the United States in July 2015 for use as an adjunctive action for

2394-2789/© 2024 Author(s), Published by Innovative Publication.

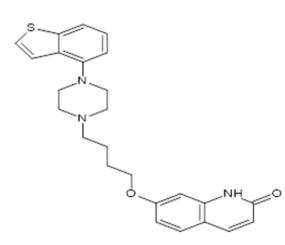



Figure 1: Structure of Brexpiprazole<sup>8</sup>

major depressive disorder (MDD) and schizophrenia.9 Antipsychotics are first and second-generation drugs that are mainly active as D2 receptor antagonists.<sup>10,11</sup> Brexpiprazole acts as a partial agonist of the serotonin 5-HT1A receptor and the dopamine D2 and D3 receptors. Partial agonists have both blocking properties and stimulating properties at the receptor they bind to. The ratio of blocking activity to stimulating activity determines a portion of its clinical effects. .<sup>12</sup> brexpiprazole is a substrate of CYP2D6 and CYP3A4, like its predecessor aripiprazole. Participants in the clinical trials are advised to avoid grapefruit, Seville oranges and related citruses. The literature survey discovered that by UV-visible spectroscopy and HPLC.<sup>13-17</sup> method Brexpiprazole was determined. In the current work, the authors have proposed dissolution method development and validation of Brexpiprazole which is a simple, precise, robust, and valid RP-HPLC method for the estimation of Brexpiprazole in the pharmaceutical active dosage form.

# 2. Materials and Methods

## 2.1. Chemicals and solvents

Brexpiprazole standard (Purity  $\geq$  99.7), triethylamine, phosphoric acid, Methanol, HPLC grade water (Millipore).

#### 2.2. Instrumentation

The instrument employed in the present work were analytical microbalance (Make: Mettler Toledo, Model: XP56), 1260 Infinity HPLC having column Hemochrom C-8, 25 cm X 4.6 mm x 5  $\mu$ , USP Apparatus Type II (Paddle), sonicator (Make: Elma, Model: S300H),

#### 2.3. Method development

#### 2.3.1. Optimization of the chromatographic conditions

The system used was Agilent 1260 Infinity HPLC having column Hemochrom, mobile phase was prepared by a combination of 20 ml of triethylamine with 1000 ml of HPLC grade water and 680 ml of HPLC Grade Methanol. pH was adjusted to  $4.0 \pm 0.05$  with phosphoric acid, degassed by sonicator, and mix well. The diluent used was water. Analysis was carried out at wavelength 227 nm, flow rate 1ml per minute, 18-22 °C temperature, with an injection volume of 50  $\mu$ l with time 21 minutes.

#### 2.3.2. Preparation of working standards

The standard solution of Brexpiprazole prepared as 27.5 mg of pure drug was dissolved in a 250 mL volumetric flask and diluted to volume with water. Further 10 mL of stock was diluted to 50 mL with diluent, further, dilute 5 ml of the above-diluted solution to 10 ml with diluent.

# 2.3.3. Method validation

By analyzing linearity, precision (method and intermediate), accuracy, LOD, LOQ, deterioration, and robustness, the present created technique was verified according to ICH and FDA requirements.

2.3.3.1. Specificity. Specificity is the ability to access unequivocally the analyte in the presence of components that may be expected to be present. Separate vials were prepared and injected to check the interference. The standard solution was prepared to have a percentage purity of 99.61%. The analysis was done using various methods such as Blank solution, Control standard solution, Test solution and Placebo solution respectively.

2.3.3.2. Accuracy. Accuracy was conducted in the range of 20 % to 150 % of working concentration of 10 mg strength. Solutions of each accuracy level were prepared in triplicate. The study was performed by using placebo tablets of 10 mg strength. Determination of percent recovery was carried out in each study.

2.3.3.3. Linearity and range. The linearity parameter of an analytical procedure is its ability to obtain test results that are directly proportionally to the concentration of analyte in the sample. Linearity was conducted for the Brexpiprazole concentration between 20% to 150% level of limit concentration. Graphically region was plotted. The range was evaluated based on linearity.

2.3.3.4. Precision. Precision was conducted by using tablets of 10.0 mg strength. This study was performed on 6 different jars. Standard solutions were prepared by purity 99.61%, Weight 27.69mg, and Concentration 11.03  $\mu$ g/ml. In the precision determination method, the blank and standard solution method was used, also the intermediate

precision determination method was done by using standard and blank solution.  $^{18}\,$ 

2.3.3.5. Robustness. The robustness was performed by using different samples with chromatogram injection and check the parameter to carrying out deliberate variations like Flow rate ( $\pm 10\%$ ), Wavelength ( $\pm 10\%$  at 230 nm and  $\pm 10\%$  at 224 nm), RPM ( $\pm 10\%$ ) and the volume of the dissolution medium (changed by  $\pm 10\%$ )

| Sr.<br>No. | Parameter                                                       | Actual<br>Parameter |             | eter to be<br>inged |
|------------|-----------------------------------------------------------------|---------------------|-------------|---------------------|
| 1          | HPLC (Flow<br>Rate)                                             | 1.000 ml            | 0.900<br>ml | 1.100 ml            |
| 2          | HPLC<br>(Wavelength)                                            | 227 nm              | 224 nm      | 230 nm              |
| 3          | Dissolution<br>apparatus:<br>RPM                                | 75                  | 68          | 82                  |
| 4          | Dissolution<br>apparatus:<br>Volume of<br>Dissolution<br>Medium | 900 ml              | 890 ml      | 910 ml              |

# 3. Results

# 3.1. Method development

The developed chromatographic conditions were optimized to determine Brexpiprazole in drug substance and dosage form. The symmetrical peak was found with Hemochrom C-8, 25 cm X 4.6 mm x 5  $\mu$  or equivalent column at 18-22 °C, and the mobile phase consisted of 20 ml of Triethylamine with 1000 ml of HPLC grade water and 680 ml of HPLC Grade Methanol. Adjust the pH of this solution to 4.0 ± 0.05 with phosphoric acid. Detector performed at 227 nm and the flow rate was 1.0 mL/min. The injection volume was 50  $\mu$ l and the run time was 25 min.

#### 3.1.1. Specificity

The developed chromatographic method passed specificity criteria and the results of specificity are given the table 2-3.

## 3.1.2. Accuracy

The accuracy was done by analyzing samples at six different levels of concentrations the recovery of the method was determined by spiking Brexpiprazole active substances. The % recovery results are shown in table 4-5.

## 3.1.3. Linearity

Linearity was conducted for the Brexpiprazole concentration between 20% to 150% level of limit concentration. Range was evaluated based on linearity.

Table 2: Summary of results for specificity study

| Sr. | Solution      | Area     | %         | Remark        |
|-----|---------------|----------|-----------|---------------|
| No. | Name          |          | Interfere | ence          |
| 1   | Blank         | ND       | NA        | NA            |
| 2   | Control       | 13785046 | 99.4      | Due to        |
|     | standard      |          |           | Brexpiprazole |
| 3   | Calibration   | 13874561 | 100.0     | Due to        |
|     | standard      |          |           | Brexpiprazole |
| 4   | Placebo       | ND       | NA        | NA            |
|     | solution      |          |           |               |
| 5   | Drug          | 13963158 | 100.6     | Due to        |
|     | substance     |          |           | Brexpiprazole |
| 6   | Drug          | 13930289 | 100.4     | Due to        |
|     | substance +   |          |           | Brexpiprazole |
|     | Placebo       |          |           |               |
| 7   | Test solution | 13877334 | 100.0     | Due to        |
|     |               |          |           | Brexpiprazole |
| ND- |               |          |           |               |

Table 3: Result of specificity

| Sr. No. | Evaluation<br>parameter | Results                                                                                                                 | Acceptance<br>Criteria                                                                                                              |
|---------|-------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 1.      | Specificity             | Retention time of<br>Brexpiprazole<br>peak in the test<br>solution is<br>comparable to<br>that in standard<br>solution. | Retention<br>time of<br>Brexpiprazole<br>peak in test<br>solution<br>should be<br>comparable to<br>that in<br>standard<br>solution. |
|         |                         | Interference of<br>diluent and<br>placebo is not<br>more than 0.5%<br>of Brexpiprazole                                  | Interference<br>of diluent and<br>placebo<br>should not be<br>more than<br>0.5% of<br>Brexpiprazole                                 |

Linearity summary is given in the graph is in figure 2 and in table from 6.

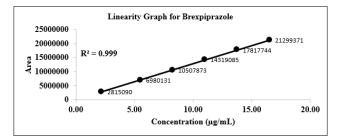


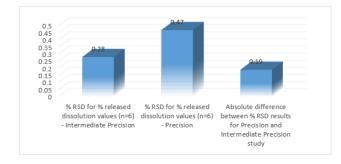

Figure 2: Linearity graph of Brexpiprazol

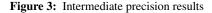
| Levels                 | % Level w.r.t.<br>working<br>concentration | The concentration of levels in $\mu$ g/mL | Area     | Added<br>Concentration in<br>µg/mL | Recovered<br>Concentration<br>in µg/mL | % Recovery<br>(Rounded) |
|------------------------|--------------------------------------------|-------------------------------------------|----------|------------------------------------|----------------------------------------|-------------------------|
|                        |                                            | 2.20                                      | 2819899  | 2.20                               | 2.16                                   | 98.0                    |
| 1                      | 20                                         | 2.20                                      | 2804934  | 2.20                               | 2.14                                   | 97.0                    |
|                        |                                            | 2.20                                      | 2820437  | 2.20                               | 2.16                                   | 98.0                    |
|                        |                                            | 5.50                                      | 6964933  | 5.50                               | 5.32                                   | 97.0                    |
| 2                      | 50                                         | 5.50                                      | 6989944  | 5.50                               | 5.34                                   | 97.0                    |
|                        |                                            | 5.50                                      | 6985517  | 5.50                               | 5.34                                   | 97.0                    |
|                        |                                            | 8.25                                      | 10499850 | 8.25                               | 8.03                                   | 97.0                    |
| 3                      | 75                                         | 8.25                                      | 10509541 | 8.25                               | 8.03                                   | 97.0                    |
|                        |                                            | 8.25                                      | 10514228 | 8.25                               | 8.04                                   | 98.0                    |
|                        |                                            | 11.00                                     | 14260907 | 11.00                              | 10.90                                  | 99.0                    |
| 4                      | 100                                        | 11.00                                     | 14336655 | 11.00                              | 10.96                                  | 100.0                   |
|                        |                                            | 11.00                                     | 14359693 | 11.00                              | 10.98                                  | 100.0                   |
|                        |                                            | 13.76                                     | 17818661 | 13.76                              | 13.62                                  | 99.0                    |
| 5                      | 125                                        | 13.76                                     | 17820402 | 13.76                              | 13.62                                  | 99.0                    |
|                        |                                            | 13.76                                     | 17814170 | 13.76                              | 13.62                                  | 99.0                    |
|                        |                                            | 16.51                                     | 21328801 | 16.51                              | 16.31                                  | 99.0                    |
| 6                      | 150                                        | 16.51                                     | 21329407 | 16.51                              | 16.31                                  | 99.0                    |
|                        |                                            | 16.51                                     | 21239906 | 16.51                              | 16.24                                  | 98.0                    |
| Average 9              | % Recovery                                 |                                           |          | 98.2                               | 2                                      |                         |
| Standard               | Deviation                                  |                                           |          | 1.060                              | )3                                     |                         |
| Relative s             | standard Deviation                         |                                           |          | 1.1                                |                                        |                         |
| Minimum                | n % Recovery                               |                                           |          | 97.0                               | )                                      |                         |
| Maximum % Recovery     |                                            |                                           |          | 100.                               | 0                                      |                         |
| Sample size            |                                            |                                           |          | 18                                 |                                        |                         |
| Confidence Coefficient |                                            |                                           |          | 1.96                               | )                                      |                         |
| Margin of              |                                            |                                           |          | 0.489                              |                                        |                         |
| 95% Con                | fidence interval upper                     | limit                                     |          | 98.7                               | 1                                      |                         |
| 95% Con                | fidence interval lower                     | limit                                     |          | 97.7                               | 1                                      |                         |
| 95% Con                | fidence interval                           |                                           |          | 97.7-9                             | 8.7                                    |                         |

# Table 4: Accuracy levels area response

# Table 5: Accuracy results

| Sr. No. | <b>Evaluation Parameter</b> | Results                 | Acceptance Criteria      |
|---------|-----------------------------|-------------------------|--------------------------|
| 1       | Individual % Recovery       | Between 97.0% to 100.0% | Between 95.0% and 105.0% |
| 2       | Mean % recovery (n=18)      | 98.2                    | Between 97.0% and 103.0% |
| 3       | 95 % Confidence Interval    | 97.7 - 98.7             | To be reported           |


# Table 6: Linearity and range results


| Sr. No. | <b>Evaluation Parameter</b> | Results       | Acceptance criteria |
|---------|-----------------------------|---------------|---------------------|
| 1       | Correlation Coefficient     | 0.999         | ≥ 0.99              |
| 2       | Y – Intercept               | -99954.1606   | To be reported      |
| 3       | % Y – Intercept             | -0.7          | $\leq \pm 5$        |
| 4       | Slope of regression line    | 1299178.9578  | To be reported      |
| 6       | Residual sum of square      | 40291650086   | To be reported      |
| 7       | Range                       | 2.20 to 16.51 | To be reported      |

## 3.1.4. Precision

The Method precision and Intermediate precision (ruggedness) were prepared and evaluated six samples at 100% of the target sample concentration as per the method. The results of % assay and % RSD are presented in Table 7-9 and in figure 3.

# 4. Method Prescision





## 4.1.

#### 4.1.1. Robustness

The robustness of the method was studied by small variation of the chromatographic conditions such as flow  $(1.0 \pm 0.2 \text{ mL/min})$ , column temperature  $(30 \pm 5^{\circ}\text{C})$ , and mobile phase composition  $(\pm 10\% \text{ absolute})$ . The results are given in Table 10-16.

# **Change in Rpm – Dissolution Apparatus**

## 5. Discussion

In this RP-HPLC method, the Retention time of the Brexpiprazole peak in the test solution is comparable to that in the standard solution. It was found that interference of diluent and placebo is not more than 0.5% of Brexpiprazole. The individual % recovery was found to be between 97.0% to 100.0%, the linearity was within the range of 10- 60  $\mu$ g mL with a Correlation Coefficient of 0.999, Slope of the regression line was found to be 1299178.9578 which means all parameters were found to be within range. In precision % RSD for % released dissolution values were found to be 99.16, in robustness, all the parameters like change in the flow rate, wavelength, and in RPM shows that the developed method was robust.

## 6. Conclusion

This study is a stability-indicating analysis that was done in accordance with ICH/FDA criteria. The proposed approach performed well in terms of sensitivity, precision, accuracy, linearity and range, robustness. The well-known RP-HPLC method for the study of Brexpiprazole was shown to be trustworthy, as well as easy, consistent, cost-effective, and exact. For quality control or routine quantification, this method is applicable to determine Brexpiprazole in a bulk and pharmaceutical dosage form. This developed method required less time.

## 7. Abbreviations

RP-HPLC- Reversed-phase high-performance liquid chromatography, USP- United States Pharmacopeia, LOD- Limit of detection LOQ- Limit of quantification, D2- Dopamine receptor, ICH- International Council on Harmonisation, FDA- Food drug administration, RPM-Rotation per minute, ND- Not detected, NA- Not applicable, RSD- Relative standard deviation.

#### 8. Source of Funding

None.

#### 9. Conflict of Interest

None.

#### References

- Jagdale AS, Pendbhaje NS, Nirmal RV, Bachhav PM, Sumbre DB. Development and validation of RP-HPLC method for estimation of brexpiprazole in its bulk and tablet dosage form using Quality by Design approach. *Future J Pharm Sci.* 2021;7:142.
- Jones G. Brexpiprazole: a review in schizophrenia. CNS Drugs. 2016;30(4):335–77.
- Croxtall JD. Aripiprazole: a review of its use in the management of schizophrenia in adults. CNS Drugs. 2012;26(2):155–83.
- Mcevoy J, Citrome L. Brexpiprazole for the Treatment of Schizophrenia: A Review of this Novel Serotonin-Dopamine Activity Modulator. *Clin Schizophr Relat Psychoses*. 2016;9(4):177–86.
- Citrome L. Brexpiprazole: a new dopamine D<sub>2</sub>receptor partial agonist for the treatment of schizophrenia and major depressive disorder. *Drugs Today (Barc)*. 2015;51(7):397–414.
- Maeda K, Sugino H, Akazawa H, Shimada AN. Brexpiprazole I: In Vitro and In Vivo Characterization of a Novel Serotonin-Dopamine Activity Modulator. J Pharm Experim Therap. 2014;350(3):589–604.
- Citrome L, Volavka J. Specific Anti-hostility Effects of Atypical Antipsychotics in Persons with Schizophrenia: From Clozapine to Cariprazine. *Harvard Rev Psych.* 2021;29(1):20–34.
- Ma M, Ren Q, Yang C. Adjunctive treatment of brexpiprazole with fluoxetine shows a rapid antidepressant effect in social defeat stress model: Role of BDNF-TrkB signaling. *Sci Rep.* 2016;6:39209.
- Enders J, Reddy SG, Strickland EC, Mcintire GL. Identification of metabolites of brexpiprazole in human urine for use in monitoring patient compliance. *Clin Mass Spectro*. 2017;6:21–4.
- Greig SL. Brexpiprazole: first global approval. Drugs. 2015;75(14):1687–97.
- Maeda K, Sugino H, Akazawa H. Brexpiprazole I: in vitro and in vivo characterization of a novel serotonin-dopamine activity modulator. J Pharmacol Exp Ther. 2014;350(3):589–604.
- Oosterhof CA, Mansari E, Blier M. Acute effects of brexpiprazole on serotonin, dopamine, and norepinephrine systems: an in vivo electrophysiologic characterization. *J Pharmacol Exp Ther*. 2014;351(3):585–95.
- Thakkar AM, Chhalotiya UK, Parekh N, Desai JV, Dalwadi HB, Shah DA. Quantification of Brexpiprazole in bulk and its pharmaceutical dosage form by UV-visible spectroscopic and SIAM RP-LC method. *Austin Chromatogr.* 2018;5:1–50.

| Test    | <b>Retention time</b> | Area         | %Drug released |
|---------|-----------------------|--------------|----------------|
| 1       | 17.82                 | 14132702     | 99.10          |
| 2       | 17.83                 | 14135590     | 99.12          |
| 3       | 17.82                 | 14167535     | 99.35          |
| 4       | 17.79                 | 14062104     | 98.61          |
| 5       | 17.81                 | 14090551     | 98.81          |
| 6       | 17.83                 | 14254142     | 99.96          |
| Average | 17.817                | 14140437.333 | 99.158         |
| SD      | 0.0151                | 66889.6467   | 0.4691         |
| % RSD   | 0.08                  | 0.47         | 0.47           |

Table 7: Observation summary of test solution

# Table 8: System suitability test for precision study

| Sr. No. | Evaluation Parameter                                                                 | Results | Acceptance Criteria      |
|---------|--------------------------------------------------------------------------------------|---------|--------------------------|
| 1       | % Recovery of control standard against average<br>Calibration standard.              | 101.2   | Between 98.0% and 102.0% |
| 2       | % Recovery of bracketing / closing standard against<br>average calibration standard. | 99.7    | Between 98.0% and 102.0% |
| 3       | % RSD of minimum 5 replicate injections of the calibration standard.                 | 0.09    | NMT 2.0 %                |

# Table 9: Observation summary of test solution

| Test    | <b>Retention time</b> | Area         | % Drug released |
|---------|-----------------------|--------------|-----------------|
| 1       | 17.81                 | 13881294     | 98.44           |
| 2       | 17.82                 | 13907429     | 98.63           |
| 3       | 17.8                  | 13799749     | 97.86           |
| 4       | 17.81                 | 13896722     | 98.55           |
| 5       | 17.81                 | 13854417     | 98.25           |
| 6       | 17.81                 | 13871104     | 98.37           |
| Average | 17.810                | 13868452.500 | 98.352          |
| SD      | 0.0063                | 38490.0843   | 0.2730          |
| % RSD   | 0.04                  | 0.28         | 0.28            |

# Table 10:

| Sr. No. | Parameter                                             | Actual Parameter | Parameter to | o be changed |
|---------|-------------------------------------------------------|------------------|--------------|--------------|
| 1       | HPLC (Flow Rate)                                      | 1.000 ml         | 0.900 ml     | 1.100 ml     |
| 2       | HPLC (Wavelength)                                     | 227 nm           | 224 nm       | 230 nm       |
| 3       | Dissolution apparatus: RPM                            | 75               | 68           | 82           |
| 4       | Dissolution apparatus Volume of<br>Dissolution Medium | 900 ml           | 890 ml       | 910 ml       |

# Table 11: Parameters of robustness

| Test    | Retention time | Area         | % Drug released |
|---------|----------------|--------------|-----------------|
| 1       | 16.96          | 13302656     | 99.13           |
| 2       | 16.95          | 13219849     | 98.51           |
| 3       | 16.95          | 13250240     | 98.74           |
| 4       | 16.95          | 13266822     | 98.86           |
| 5       | 16.95          | 13243665     | 98.69           |
| 6       | 16.96          | 13229258     | 98.58           |
| Average | 16.953         | 13252081.667 | 98.752          |
| SD      | 0.0052         | 29695.5794   | 0.2221          |
| % RSD   | 0.03           | 0.22         | 0.22            |

 Table 12: Observation summary of test solution for change in flow rate (+10%)

| Test    | <b>Retention time</b> | Area         | % Drug released |
|---------|-----------------------|--------------|-----------------|
| 1       | 18.82                 | 15179637     | 98.93           |
| 2       | 18.83                 | 15161521     | 98.81           |
| 3       | 18.82                 | 15182428     | 98.95           |
| 4       | 18.82                 | 15183974     | 98.96           |
| 5       | 18.81                 | 15163972     | 98.83           |
| 6       | 18.82                 | 15189733     | 98.99           |
| Average | 18.820                | 15176877.500 | 98.911          |
| SD      | 0.0063                | 11457.9327   | 0.0747          |
| % RSD   | 0.03                  | 0.08         | 0.08            |

 Table 13: Observation summary of test solution for change in flow rate (-10%)

| Test    | <b>Retention time</b> | Area         | % Drug released |
|---------|-----------------------|--------------|-----------------|
| 1       | 17.72                 | 10558518     | 98.94           |
| 2       | 17.72                 | 10548074     | 98.84           |
| 3       | 17.72                 | 10566387     | 99.01           |
| 4       | 17.73                 | 10553938     | 98.89           |
| 5       | 17.72                 | 10561257     | 98.96           |
| 6       | 17.72                 | 10563592     | 98.98           |
| Average | 17.722                | 10558627.667 | 98.937          |
| SD      | 0.0041                | 6707.4416    | 0.0622          |
| % RSD   | 0.02                  | 0.06         | 0.06            |

 Table 14: Observation summary of test solution for change in wavelength (+10%)

| Test    | <b>Retention time</b> | Area         | % Drug released |
|---------|-----------------------|--------------|-----------------|
| 1       | 17.72                 | 14654726     | 98.55           |
| 2       | 17.72                 | 14635423     | 98.42           |
| 3       | 17.72                 | 14642595     | 98.47           |
| 4       | 17.73                 | 14665109     | 98.62           |
| 5       | 17.73                 | 14655124     | 98.55           |
| 6       | 17.73                 | 14654220     | 98.54           |
| Average | 17.725                | 14651199.500 | 98.525          |
| SD      | 0.0055                | 10520.1795   | 0.0701          |
| % RSD   | 0.03                  | 0.07         | 0.07            |

 Table 15: Observation summary of test solution for change in flow rate (-10%)

| Test    | Retention time | Area         | % Drug released |
|---------|----------------|--------------|-----------------|
| 1       | 18.02          | 14318703     | 99.69           |
| 2       | 17.97          | 14248589     | 99.20           |
| 3       | 17.98          | 14234946     | 99.11           |
| 4       | 17.97          | 14195429     | 98.83           |
| 5       | 17.97          | 14161434     | 98.60           |
| 6       | 17.98          | 14220280     | 99.01           |
| Average | 17.982         | 14229896.833 | 99.073          |
| SD      | 0.0194         | 53346.2295   | 0.3701          |
| % RSD   | 0.11           | 0.37         | 0.37            |

|  | Table 16: Observation | summary of test | solution for | change in RPM | (+10%) |
|--|-----------------------|-----------------|--------------|---------------|--------|
|--|-----------------------|-----------------|--------------|---------------|--------|

| Test    | <b>Retention time</b> | Area         | % Drug released |
|---------|-----------------------|--------------|-----------------|
| 1       | 17.97                 | 14254419     | 99.25           |
| 2       | 17.97                 | 14208519     | 98.93           |
| 3       | 17.98                 | 14256434     | 99.26           |
| 4       | 17.97                 | 14217491     | 98.99           |
| 5       | 17.98                 | 14234364     | 99.11           |
| 6       | 17.95                 | 14216445     | 98.98           |
| Average | 17.970                | 14231278.667 | 99.087          |
| SD      | 0.0110                | 20522.7920   | 0.1432          |
| % RSD   | 0.06                  | 0.14         | 0.14            |

| Table 17: Observation summary | of test solution fo | r change in volume of | dissolution medium $(+10\%)$ |
|-------------------------------|---------------------|-----------------------|------------------------------|
|                               |                     |                       |                              |

| Test    | <b>Retention time</b> | Area         | % Drug released |
|---------|-----------------------|--------------|-----------------|
| 1       | 17.97                 | 14174713     | 98.62           |
| 2       | 17.97                 | 14217690     | 98.92           |
| 3       | 17.98                 | 14193228     | 98.75           |
| 4       | 17.98                 | 14183120     | 98.68           |
| 5       | 17.99                 | 14118944     | 98.23           |
| 6       | 17.99                 | 14141478     | 98.39           |
| Average | 17.980                | 14171528.833 | 98.598          |
| SD      | 0.0089                | 35817.3659   | 0.2501          |
| % RSD   | 0.05                  | 0.25         | 0.25            |

Table 18: Observation summary of test solution for change in volume of dissolution medium (-10%)

| Test    | <b>Retention time</b> | Area         | % Drug released |
|---------|-----------------------|--------------|-----------------|
| 1       | 17.96                 | 14154612     | 98.48           |
| 2       | 17.97                 | 14166845     | 98.57           |
| 3       | 17.97                 | 14158635     | 98.51           |
| 4       | 17.97                 | 14152137     | 98.46           |
| 5       | 17.97                 | 14124843     | 98.27           |
| 6       | 17.97                 | 14161002     | 98.52           |
| Average | 17.968                | 14153012.333 | 98.468          |
| SD      | 0.0041                | 14721.6052   | 0.1042          |
| % RSD   | 0.02                  | 0.10         | 0.11            |

- Sravani A, Durga N, Uppalapati CH, Suneetha D, Suresh CH, Tirumaleswara P. Method development and validation for the estimation of Brexpiprazole in drug substance By RP-HPLC method. *Indo Am J Pharm Res.* 2017;7:8560–5.
- Nehal PB, Ashok BP, Rao MS, Amit JV, Nilesh KP, Ajay P. Development and validation of stability-indicating assay method and characterization of degradation product for Brexpiprazole bulk by RP-HPLC. J Chem Pharm Res. 2018;10(1):55–66.
- Sowjanya B, Rambabu K. Development and validation for the simultaneous estimation of Brexpiprazole and fluoxetine in drug substance by RP-HPLC. *Euro J Biomed Pharm Sci.* 2018;5:411–7.
- Amit G, Rajendra P. Gradient high-performance liquid chromatography method for determination of related substances in Brexpiprazole API. *Int J Dev Res.* 2018;8:21416–24.
- Shah R, Nagar A, Bardiya R, Shirkhedkar A, Purohit D, Bendale A. Combined and comparative analytical studies with stability studies and validation for estimation of prenoxdiazine HCl in pharmaceutical dosage form. *Future J Pharma Sci.* 2023;9(1):53.

## Author biography

Mansi Patole, Research Scholar

Atul Bendale, Professor in https://orcid.org/0000-0002-3219-0377

Vasim Pathan, Associate Professor (b https://orcid.org/0000-0001-8743-8141

Sushil Narkhede, Associate Professor () https://orcid.org/0000-0002-8005-9066

Namrata Revar, Assistant Professor

Anil G Jadhav, Professor D https://orcid.org/0000-0003-3336-6503

**Cite this article:** Patole M, Bendale A, Pathan V, Narkhede S, Revar N, Jadhav AG. Dissolution method development and validation of brexpiprazole. *Int J Pharm Chem Anal* 2024;11(3):245-252.