Print ISSN:-2394-2789

Online ISSN:-2394-2797

CODEN : IJPCN9




Downlaod Files

   


Article Access statistics

Viewed: 1493

PDF Downloaded: 551


Molecular dynamics simulations: A mechanistic probe for understanding antibacterial activity


Full Text PDF


Original Article

Author Details : Arati Prabhu

Volume : 4, Issue : 3, Year : 2017

Article Page : 66-69


Suggest article by email

Get Permission

Abstract

Introduction: Molecular dynamics, in which molecules are allowed to interact over time at a given temperature following the laws of classical mechanics has been shown to be highly successful in simulating various biological phenomena down to atomic detail. When applied to complexes of protein targets and potential binders, this technique, provides a detailed description of the stability of the protein-ligand complexes, thereby throwing light on the binding potential of the ligands to probable target proteins.
Materials and Method: In the present study we have explored the mechanism of protein synthesis inhibition by the antibiotic thiostrepton with the combination of manual docking followed by molecular dynamics simulations to two molecular targets – the L11/23S-rRNA interface and the elongation factor Ef-Tu. Cross-docking runs on the two native co-crystallised ligands of the target proteins were done as a further probe.
Results: Docking of thiostrepton at the L11/23S-rRNA interface as well as Ef-Tu indicated stable binding during 10-ns molecular dynamics simulations, whereas LFF571 binds stably only to its native protein EF-Tu which is in accordance to literature reports. Thus, molecular dynamics simulation studies indicate that thiostrepton has binding potential to two targets of protein synthesis translation, the elongation factor (Ef-Tu) and L11 protein and 23S-rRNA interface.
Conclusion: This study corroborates that thiostrepton inhibits Ef-Tu in addition to the L11-ribosomal RNA complex. Binding to multiple targets probably enhances its inhibitory effect on protein translation.

Keywords: Thiazolyl peptide, Macrocyclic, Ef-Tu, Molecular dynamics simulations, Thiostrepton, Ribosome



How to cite : Prabhu A, Molecular dynamics simulations: A mechanistic probe for understanding antibacterial activity. Int J Pharm Chem Anal 2017;4(3):66-69


This is an Open Access (OA) journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.