- Visibility 257 Views
- Downloads 284 Downloads
- Permissions
- DOI 10.18231/j.ijpca.v.12.i.2.7
-
CrossMark
- Citation
Vaccine adjuvants: Insights into development, present and future perspective
- Author Details:
-
Parixit Prajapati *
-
Alkesh Mourya
Vaccination offers a reliable biological defence against a particular infection or malignant disease. Vaccines are made up of certain substances that mimic a series of events that prompt the body defence system to identify and eradicate the sustance as a threat. Adjuvants are compounds that are included into vaccines in order to improve or strengthen the defence mechanism towards infectious diseases. Through the yrs. adjuvant development has witnessed a number of notable advancements. Adjuvants are divided into four types: delivery systems, immune-stimulating mucosal adjuvants, and combinations of adjuvants. These categories are further divided into mineral salt, Emulsions, microscopic particles, and agonists of receptors 1/2, 3, 4, 5, 7/8, 9, and NOD. This overview covers the adjuvant s' history, various kinds, licensed adjuvants, and other related topics. which are under clinical trials or clinical developments and Various type of adjuvants use for vaccine developments.
References
- Bai C, He J, Niu H, Hu L, Luo Y, Liu X, et al. Prolonged intervals during Mycobacterium tuberculosis subunit vaccine boosting contributes to eliciting immunity mediated by central memory-like T cells. TB. 2018; 110:104-11.
- Elias G, Meysman P, Bartholomeus E. Preexisting memory CD4 T cells in naive individuals confer robust immunity upon hepatitis B vaccination. Elife. 2022; https://doi.org/10.7554/eLife.68388
[Google Scholar] - Corrado M, Pearce EL. Targeting memory T cell metabolism to improve immunity. J Clin Invest. 2022;132(1):e148546.
- Lee W, Suresh M. Vaccine adjuvants to engage the cross- presentation pathway. Front Immunol. 2022; 13:940047
- Liang Z, Zhu H, Wang X, Jing B, Li Z, Xia X, et al. Adjuvants for Coronavirus Vaccines. Front Immunol. 2020; 11:589833.
- Shi S, Zhu H, Xia X, Liang Z, Ma X, Sun B. Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccin. 2019; 37(24):3167-3178
- HogenEsch H. Mechanisms of stimulation of the immune response by aluminum adjuvants. Vaccin. 2002; 20(3):S34-9.
- Chang J. Adjuvant activity of incomplete Freund’s adjuvant. Adv Drug Deliv Rev. 1998; 32(3):173-186.
- He P, Zou Y, Hu Z. Advances in aluminum hydroxide-based adjuvant research and its mechanism. Hum Vaccin Immunother. 2015; 11(2):477-88.
- Ali H, Akbar Md, Iqbal B, et al. Virosome: An engineered virus for vaccine delivery. Saudi Pharm J. 2023; 31(5):752-764. 129 Prajapati and Mourya / International Journal of Pharmaceutical Chemistry and Analysis 2025;12(2):121–130
- Marasini N, Ghaffar KA, Skwarczynski M, Toth I. Liposomes as a Vaccine Delivery System. In: Micro and Nanotechnology in Vaccine Development. Elsevier; 2017;221-39.
- Ko EJ, Kang SM. Immunology and efficacy of MF59-adjuvanted vaccines. Hum Vaccin Immunother. 2018;14;12:3041-5.
- Lindblad EB, Duroux L. Mineral Adjuvants. In: Immunopotentiators in Modern Vaccines. Elsevier; 2017. pp. 347-
- Moni SS, Abdelwahab SI, Jabeen A, et al. Advancements in Vaccine Adjuvants: The Journey from Alum to Nano Formulations. Vaccin. 2023;11(11):1704.
- Verma SK, Mahajan P, Singh NK. New-age vaccine adjuvants, their development, and future perspective. Front Immunol. 2023;14;
- Garçon N, Tavares Da Silva F. Development and Evaluation of AS04, a Novel and Improved Adjuvant System Containing 3-O- Desacyl-4′- Monophosphoryl Lipid A and Aluminum Salt. In: Immunopotentiators in Modern Vaccines. Elsevier; 2017;287-309.
- Laera D, HogenEsch H, O’Hagan DT. Aluminum Adjuvants-‘Back to the Future.’ Pharm. 2023;15(7):1884
- Cohet C, van der Most R, Bauchau V. Safety of AS03-adjuvanted influenza vaccines: A review of the evidence. Vaccin. 2019;
- Tregoning JS, Russell RF, Kinnear E. Adjuvanted influenza vaccines. Hum Vaccin Immunother. 2018;14(3):550-64.
- O’Hagan DT, van der Most R, Lodaya RN, Coccia M, Lofano G. “World in motion” – emulsion adjuvants rising to meet the pandemic challenges. NPJ Vaccin. 2021; 6(1):158.
- Carter D, van Hoeven N, Baldwin S, et al. The adjuvant GLA-AF enhances human intradermal vaccine responses. Sci Adv. 2018;4(9):eaas9930
- Lee Y, Jeong M, Park J, Jung H, Lee H. Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics. Exp Mol Med. 2023; 55(10):2085-2096
- Facciolà A, Visalli G, Laganà A, Di Pietro A. An Overview of Vaccine Adjuvants: Current Evidence and Future Perspectives. Vaccin. 2022;10(5):809.
- Reed SG, Orr MT, Coler RN. Vaccine Adjuvants. In: The Vaccine Book: Second Edition. Elsevier; 2016;67-76.
- Kumar A, Sharma A, Tirpude NV, Padwad Y, Hallan V, Kumar S. Plant-derived immuno-adjuvants in vaccines formulation: a promising avenue for improving vaccines efficacy against SARS- CoV-2 virus. Pharmacol Rep. 2022;74(6):1238-54.
- Stertman L, Palm AKE, Zarnegar B, et al. The Matrix-MTM adjuvant: A critical component of vaccines for the 21 st century. Hum Vaccin Immunother. 2023;19(1):2189885.
- Carnrot C, Carow B, Palm AKE. Biodistribution of the saponin- based adjuvant Matrix-MTM following intramuscular injection in mice. Front Drug Deliv. 2023;1279710.
- Zhao G, Azuar A, Toth I, Skwarczynski M. A Potent Vaccine Delivery System. Bio Protoc. 2021;11(7):e3973
- Liu Z, Yu L, Gu P, Bo R, Wusiman A, Liu J, et al. Preparation of lentinan-calcium carbonate microspheres and their application as vaccine adjuvants. Carbohydr Polym. 2020;245:116520.8:
- Skwarczynski M, Zhao G, Boer JC, Ozberk V, Azuar A, Cruz JG, et al. Poly(amino acids) as a potent self-adjuvanting delivery system for peptide-based nanovaccines. Sci Adv. 2020;29(6):2285.
- Duong HTT, Yin Y, Thambi T, Kim BS, Jeong JH, Lee DS. Highly potent intradermal vaccination by an array of dissolving microneedle polypeptide cocktails for cancer immunotherapy. J Mater Chem B. 2020;20:1171-81.
- Haberman RH, Herati R, Simon D, et al. Methotrexate hampers immunogenicity to BNT162b2 mRNA COVID-19 vaccine in immune-mediated inflammatory disease. Ann Rheum Dis. 2021;80(10):1339-44.
- Filippenko A V., Omelchenko ND, Pasyukova NI, Trufanova AA, Ivanova IA. Improvement of specific cholera prevention using immunomodulators. Med Immunol. 2021;23(4):915-20.
- Del Giudice G, Rappuoli R, Didierlaurent AM. Correlates of adjuvanticity: A review on adjuvants in licensed vaccines. Semin Immunol. 2018;39(2):14-21.
- Haseda Y, Munakata L, Kimura C. Development of combination adjuvant for efficient T cell and antibody response induction against protein antigen. PLoS One. 2021;16(8): e0254628.
- Bauer DL, Bachnak L, Limbert VM. The Adjuvant Combination of dmLT and Monophosphoryl Lipid A Activates the Canonical, Nonpyroptotic NLRP3 Inflammasome in Dendritic Cells and Significantly Interacts to Expand Antigen-Specific CD4 T Cells. J Immunol. 2023;10(10):1519-30.
- Sengupta A, Azharuddin M, Cardona ME. Intranasal Coronavirus SARS-CoV-2 Immunization with Lipid Adjuvants Provides Systemic and Mucosal Immune Response against SARS-CoV-2 S1 Spike and Nucleocapsid Protein. Vaccin. 2022;10(4):504.
- Lin Y, Sun B, Jin Z, Zhao K. Enhanced Immune Responses to Mucosa by Functionalized Chitosan-Based Composite Nanoparticles as a Vaccine Adjuvant for Intranasal Delivery. ACS Appl Mater Interfaces. 2022;14(47):52691-701.
- Gao Y, Guo Y. Research progress in the development of natural- product-based mucosal vaccine adjuvants. Front Immunol. 2023;1152855
- Marrack P, McKee AS, Munks MW. Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol. 2009;9(4):https://doi.org/10.1038/nri2510
[Google Scholar] - McKee AS, Munks MW, MacLeod MKL. Alum Induces Innate Immune Responses through Macrophage and Mast Cell Sensors, But These Sensors Are Not Required for Alum to Act As an Adjuvant for Specific Immunity. J Immunol. 2009;183(7):4403-14.
- Li H, Nookala S, Re F. Aluminum Hydroxide Adjuvants Activate Caspase-1 and Induce IL-1β and IL-18 Release. J Immunol. 2007;178(8):5271-6.
- Marichal T, Ohata K, Bedoret D, et al. DNA released from dying host cells mediates aluminum adjuvant activity. Nat Med. 2011;17(8):1996-1002.
- Moyer TJ, Kato Y, Abraham W, Chang JYH, Kulp DW, Watson N, et al. Engineered immunogen binding to alum adjuvant enhances humoral immunity. Nat Med. 2020;26:430-40.
- Rodrigues KA, Rodriguez-Aponte SA, Dalvie NC, Lee JH, Abraham W, Carnathan DG, et al. Phosphate-mediated coanchoring of RBD immunogens and molecular adjuvants to alum potentiates humoral immunity against SARS-CoV-2. Sci Adv. 2021;10(7):50.
- O’Hagan DT, Wack A, Podda A. MF59 Is a Safe and Potent Vaccine Adjuvant for Flu Vaccines in Humans: What Did We Learn During Its Development? Clin Pharmacol Ther. 2007; 82(6):740-4.
- Vesikari T, Pellegrini M, Karvonen A. Enhanced Immunogenicity of Seasonal Influenza Vaccines in Young Children Using MF59 Adjuvant. J Pediatr. Infect Dis. 2009; https://doi.org/10.1097/INF.0b013e31819d6394
[Google Scholar] - Galson JD, Trück J, Kelly DF, van der Most R. Investigating the effect of AS03 adjuvant on the plasma cell repertoire following pH1N1 influenza vaccination. Sci Rep. 2016;16:6:37229.
- Garçon N, Vaughn DW, Didierlaurent AM. Development and evaluation of AS03, an Adjuvant System containing α-tocopherol and squalene in an oil-in-water emulsion. Expert Rev Vaccines. 2012; 11(3):349-66.
- Morel S, Didierlaurent A, Bourguignon P, Delhaye S, Baras B, Jacob V, et al. Adjuvant System AS03 containing tocopherol modulates innate immune response and leads to improved adaptive immunity. Vaccin. 2011; 29(13):2461-73
- Johansen K. The roles of influenza virus antigens and the AS03 adjuvant in the 2009 pandemic vaccine associated with narcolepsy needs further investigation. Dev Med Child Neurol. 2014; 56(11):1041-2.
- Patil V, Hernandez-Franco JF, Yadagiri G, et al. Characterization of the Efficacy of a Split Swine Influenza A Virus Nasal Vaccine Formulated with a Nanoparticle/STING Agonist Combination Adjuvant in Conventional Pigs. Vaccin. 2023; 11(11):1707.
- Turley JL, Lavelle EC. Resolving adjuvant mode of action to enhance vaccine efficacy. Curr Opin Immunol. 2022;77:102229.
- Detienne S, Welsby I, Collignon C. Central Role of CD169+ Lymph Node Resident Macrophages in the Adjuvanticity of the QS-21 Component of AS01. Sci Rep. 2016; 6:39475. 130 Prajapati and Mourya / International Journal of Pharmaceutical Chemistry and Analysis 2025;12(2):121–130
- Coccia M, Collignon C, Hervé C, Chalon A, Welsby I, Detienne S, et al. Cellular and molecular synergy in AS01-adjuvanted vaccines results in an early IFNγ response promoting vaccine immunogenicity. NPJ Vaccin. 2017;2:25.
- Garçon N, Morel S, Didierlaurent A, Descamps D, Wettendorff M, Van Mechelen M. Development of an AS04-Adjuvanted HPV Vaccine with the Adjuvant System Approach. BioDrugs. 2011;25(4):217-26.
- Didierlaurent AM, Morel S, Lockman L. AS04, an Aluminum Salt- and TLR4 Agonist-Based Adjuvant System, Induces a Transient Localized Innate Immune Response Leading to Enhanced Adaptive Immunity. J Immunol. 2009;83(10):6186-97.
- Felnerova D, Viret JF, Glück R, Moser C. Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr Opin Biotechnol. 2004;15(6):518-29.
- Dasari P, Nicholson IC, Hodge G, Dandie GW, Zola H. Expression of toll-like receptors on B lymphocytes. Cell Immunol. 2005;236(1):140-5.
- Foureau DM, Mielcarz DW, Menard LC. TLR9 -Dependent Induction of Intestinal α-Defensins by Toxoplasma gondii. J Immunol. 2010;184(12):7022-9.
- O’Neill LAJ, Bryant CE, Doyle SL. Therapeutic Targeting of Toll- Like Receptors for Infectious and Inflammatory Diseases and Cancer. Pharmacol Rev. 2009;61(2):177-97.
- Krieg AM. CpG DNA: Trigger of Sepsis, Mediator of Protection, or Both? Scand J Infect Dis. 2003;35(9):653-9.
- Klinman DM. Use of CpG oligodeoxynucleotides as immunoprotective agents. Expert Opin Biol Ther. 2004;4(6):937-46.
- Campbell JD. Development of the CpG Adjuvant 1018: A Case Study. In: Methods in Molecular Biology, Springer; 2017:15-27.
- Haining WN, Kanzler H, Davies J. A Novel Role for CpG Oligonucleotides in Tumor Immunotherapy: CpG-ODN Induce Targeted Chemokine-Induced Lymphocyte Migration to the Peripheral Tissues in Humans. Blood. 2007;110(11):1791.
- Campbell JD, Kell SA, Kozy HM. A limited CpG-containing oligodeoxynucleotide therapy regimen induces sustained suppression of allergic airway inflammation in mice. Thorax. 2014; 69(6):565-573.
- Tahtinen S, Tong AJ, Himmels P, et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat Immunol. 2022;532-43.
- Bengtsson KL, Song H, Stertman L, et al. Matrix-M adjuvant enhances antibody, cellular and protective immune responses of a Zaire Ebola/Makona virus glycoprotein (GP) nanoparticle vaccine in mice. Vaccin. 2016;34(16):1927-35.
- Ella R, Reddy S, Blackwelder W, et al. Efficacy, safety, and lot-to- lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): interim results of a randomised, double-blind, controlled, phase 3 trial. Lancet. 2021;398(10317):2173-84.
- Ghosh TK, Mickelson DJ, Fink J. Toll-like receptor (TLR) 2–9 agonists-induced cytokines and chemokines: I. Comparison with T cell receptor-induced responses. Cell Immunol. 2006;243(1):48-57.
- Kwissa M, Nakaya HI, Oluoch H, Pulendran B. Distinct TLR adjuvants differentially stimulate systemic and local innate immune responses in nonhuman primates. Blood. 2012;119(9):2044-55.
- Clark LT, Watkins L, Piña IL, et al. Increasing Diversity in Clinical Trials: Overcoming Critical Barriers. Curr Probl Cardiol. 2019;44(5):148-72.
- Levenson MS. Regulatory-grade clinical trial design using real- world data. Clin Trials. 2020;17(4):377-82.
- Milicic A, Reinke S, Fergusson J. Adjuvants, immunomodulators, and adaptogens. In: Vaccinology and Methods in Vaccine Research. Elsevier; 2022:223-80.
- Garcia-Vello P, Speciale I, Chiodo F, Molinaro A, De Castro C. Carbohydrate-based adjuvants. Drug Discov Today Technol. 2020;36:57-68.
- Carter D, Reed SG. Role of adjuvants in modeling the immune response. Curr Opin HIV AIDS. 2010;5(5):409-13.
- Cauwelaert ND, Desbien AL, Hudson TE. The TLR4 Agonist Vaccine Adjuvant, GLA-SE, Requires Canonical and Atypical Mechanisms of Action for TH1 Induction. PLoS One. 2016;11(1): e0146372.
- Hill DL, Pierson W, Bolland DJ, et al. The adjuvant GLA-SE promotes human Tfh cell expansion and emergence of public TCRβ clonotypes. J Exp Med. 2019;11:1514.
- Casadei BR, Lotierzo MCG, Malheiros B, Barbosa LRS. Drug repurposing and nanoparticles: New strategies against leishmaniasis. In: Applications of Nanobiotechnology for Neglected Tropical Diseases. Elsevier; 2021;217-41
- Vasilakos JP, Tomai MA. The use of Toll-like receptor 7/8 agonists as vaccine adjuvants. Expert Rev Vaccines. 2013;17(7):809-19.
- Toussi D, Massari P. Immune Adjuvant Effect of Molecularly- defined Toll-Like Receptor Ligands. Vaccin. 2014; 2(2):323-53.
- Lingnau K, Riedl K, von Gabain A. IC31 ® and IC30, novel types of vaccine adjuvant based on peptide delivery systems. Expert Rev Vaccines. 2007;6(5):741-6.
- Van Herck S, Feng B, Tang L. Delivery of STING agonists for adjuvanting subunit vaccines. Adv Drug Deliv Rev. 2021;179:114020.
- Gogoi H, Mansouri S, Jin L. The Age of Cyclic Dinucleotide Vaccine Adjuvants. Vaccin. 2020;8(3):453.
- Jang SI, Kim DK, Lillehoj HS. Evaluation of MontanideTM ISA 71 VG Adjuvant during Profilin Vaccination against Experimental Coccidiosis. PLoS One. 2013;8(3): e59786.
- kheirollahpour M, Mehrabi M, Dounighi NM, Mohammadi M, Masoudi A. Nanoparticles and Vaccine Development. Pharm Nanotechnol. 2020;
- Facchini FA, Minotti A, Luraghi A. Synthetic Glycolipids as Molecular Vaccine Adjuvants: Mechanism of Action in Human Cells and In Vivo Activity. J Med Chem. 2021;64(16):12261-12272.
- Tan K, Li R, Huang X, Liu Q. Outer Membrane Vesicles: Current Status and Future Direction of These Novel Vaccine Adjuvants. Front Microbiol. 2018; 9:783 .
- Howard LM, Goll JB, Jensen TL, et al. AS03-Adjuvanted H5N1 Avian Influenza Vaccine Modulates Early Innate Immune Signatures in Human Peripheral Blood Mononuclear Cells. J Infect Dis. 2019; 219(11):1786-1798.
- Pogostin BH, McHugh KJ. Novel Vaccine Adjuvants as Key Tools for Improving Pandemic Preparedness. Bioeng. 2021;8(11):155.
- Sun B, Yu S, Zhao D, Guo S, Wang X, Zhao K. Polysaccharides as vaccine adjuvants. Vaccin. 2018; 36(35):5226-5234
- Pulendran B, S. Arunachalam P, O’Hagan DT. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov. 2021; 20(6):454-475.
- Yang A, Bai Y, Dong X. Hydrogel/nanoadjuvant-mediated combined cell vaccines for cancer immunotherapy. Acta Biomater. 2021; 133:257-67
- Bowen WS, Svrivastava AK, Batra L, Barsoumian H, Shirwan H. Current challenges for cancer vaccine adjuvant development. Expert Rev Vaccines. 2018;17(3):207-15.
How to Cite This Article
Vancouver
Prajapati P, Mourya A. Vaccine adjuvants: Insights into development, present and future perspective [Internet]. Int J Pharm Chem Anal. 2025 [cited 2025 Oct 03];12(2):121-130. Available from: https://doi.org/10.18231/j.ijpca.v.12.i.2.7
APA
Prajapati, P., Mourya, A. (2025). Vaccine adjuvants: Insights into development, present and future perspective. Int J Pharm Chem Anal, 12(2), 121-130. https://doi.org/10.18231/j.ijpca.v.12.i.2.7
MLA
Prajapati, Parixit, Mourya, Alkesh. "Vaccine adjuvants: Insights into development, present and future perspective." Int J Pharm Chem Anal, vol. 12, no. 2, 2025, pp. 121-130. https://doi.org/10.18231/j.ijpca.v.12.i.2.7
Chicago
Prajapati, P., Mourya, A.. "Vaccine adjuvants: Insights into development, present and future perspective." Int J Pharm Chem Anal 12, no. 2 (2025): 121-130. https://doi.org/10.18231/j.ijpca.v.12.i.2.7